Production of Scandium and Al-Sc Alloy by

Masanori Harata*, Takao Nakamura, Hiromasa Yakushiji, Toru H. Okabe

*Institute of Industrial Science, The University of Tokyo, *Graduate Student, Graduate School of Engineering, The University of Tokyo

Introduction

•What is Scandium?

Sc is one of the rare earth elements (RE)

Properties of Sc

Element	Atomic number Z	Atomic weight M	at 20 °C of g · cm ⁻³	Melting point T _m /℃	point T _b /℃	radius	Crystal structure at 25 °C	Electro negativity	Price (\$/kg)
Sc	21	44.96	2.99	1540	2832	0.75	hcp	1.20	18000.00
Y	39	88.91	4.47	1525	3337	0.90	hcp	1.11	450.00
La	57	138.91	6.15	920	3457	1.03	hcp	1.08	350.00
Ce	58	140.12	6.77	798	3427	1.01	fcc	1.08	350.00
Nd	60	144.24	7.01	1016	3067	0.98	hcp	1.07	450.00
Sm	62	150.40	7.54	1073	1791	0.96	hcp	1.07	300.00
Fe	26	55.85	7.87	1536	2863	0.55	bcc	1.64	0.03
Al	13	26.98	2.70	660	2520	0.53	fcc	1.47	1.44
Ti	22	47.87	4.54	1666	3289	0.61	hcp	1.32	9.66

- Liahtweiaht
- · Chemically reactive
- •Sc₂O₃ is one of the most stable oxides on earth a large amount of Sc₂O₃ at a low cost

Expensive

Resource

Sc is the 31st most abundant element in the earth's crust, with a crustal abundance of 22 ppm.

Minerals such as Thortveitite contain a large amount of Sc However, such minerals are not used as a source of Sc

	because they are scarce.								
Table Chemical composition of Thortveitite									
Concentration of element i, C _i (wt%)*									
Al	Si	Р	Sc	Mn	Fe	Υ	Zr	Hf	
1.33	26.25	0.21	58.13	0.55	3.45	5.99	2.39	1.69	
intermined by V ray fluorescence analysis									

Table Minerals containing Sc							
	Minerals	Sc ₂ O ₃ content (%)	-	Minerals	Sc ₂ O ₃ content (%)		
Oxides	Magnetite	0.0001~0.04	Phosphates	Xenotime	0.0015~1.5		
	Hematite	up to 0.15		Monazite	$0.002 \sim 0.5$		
	Titanomagnetite	0.0002~0.02		Apatite	0.0003~0.08		
	Ilmenite	0.0015~0.15	Silicates	Zircon	0.005~0.3		
	Rutile	0.005~0.16		Beryl	0.0005~1.2		
	Wolframite	0.005~1.3		Garnet	0.02~0.4		
	Uraninite	0.15~0.2		Olivine	0.0003~0.02		
	Laterite	0.003~0.03		Pyroyene	un to 0.04		

Currently, Sc is produced in the form of oxide (Sc₂O₃) from rare earth ores or as a byproduct of uranium mill tailings. Recently, Ni smelting has changed from a pyrometallurgical alloying element for Al alloy. process to a hydrometallurgical process that can recover

Applications

Metal halide lamp

Others Catalysts, Laser crystals

Currently, Sc is mainly used as an Al-Sc alloy is expected to be used as a structural material for aircraft etc.

Conventional process

- Conversion into fluoride: $Sc_2O_3 + 6 HF^{973 K} + 2 ScF_3 + 3 H_2O$
- Reduction 2 ScF₃ + 3 Ca^{1873 K}2 Sc + 3 CaF₂

 $\mathrm{Sc_2O_3}$ is converted into $\mathrm{ScF_3}$ because it is thermodynamically stable. Further, it is difficult to reduce Sc_2O_3 to metallic Sc even by using Ca as a reductant.

Disadvantages

- · The production cost is high because an expensive reaction apparatus is required for handling the fluoride.
- · Contamination from the crucible cannot be prevented due to the high-temperature reaction.

Purpose of this study

To develop a new process that can produce Sc metal or Al-Sc alloy directly from Sc₂O₃ at temperatures lower than those used in the conventional process

Metallothermic Reduction

Thermodynamic analysis

Experiment

Reduction:
$$Sc_2O_3(s) + 3 Ca(g) \rightarrow 2 Sc(s) + 3 CaO(s)$$

Reduction and alloying: $Sc_2O_3(s) + AI(l) + 3 Ca(g)$ \rightarrow Al-Sc alloy (l) + 3 CaO (s)

Fig. Schematic illustration of experimental apparatus for the metallothermic reduction experiment.

Table Experimental conditions for the metallothermic reduction

Ехр.		Mass of sar	nple, W _i /g	Excess	Calculated nominal composition of Al-Sc alloy	
no.	Feed Collector metal		Flux	Reductant		
	Sc ₂ O ₃	Al	CaCl ₂	Ca		
а	0.69	-	-	1.20	2	-
b	0.15	0.96	-	0.26	2	Al-6mol%Sc
c	0.15	0.96	1 27	0.26	2	Al-6mol%Sc

A complex oxide (CaSc₂O₄) was formed

Sc₂O₃ was successfully reduced to metallic Sc and alloyed in situ to form Al-Sc liquid

alloy during the reduction. It was difficult to separate the metal phase from the salt

Phase separation was improved by using CaCl₂ as a flux. However, excess Ca reductant remained in the Al₄Ca phase.

and reduction was incomplete.

Reduction temperature: T = 1273 K Holding time: t' = 6 hr

Experiment

 $\rightarrow CO_x(g) + 2x e^{-1}$ Cathode

 Sc_2O_3 (in salt) + 6 e⁻¹ \rightarrow 2 Sc (l, in Al)+ 3 O²⁻ (in salt)

 Overall reaction Sc_2O_3 (in salt)+ C (s) \rightarrow 2 Sc (l, in Al) + CO_x (g)

		ΔG°(kJ, at 1173K)	ΔE°/V
CaCl ₂ (I)	\rightarrow Ca (l) + Cl ₂ (g)	629.108	3.20
Sc ₂ O ₃ (s) + 3/2	$2 \text{ C } (s) \rightarrow 2 \text{ Sc } (s) + 3/2 \text{ CO}_2 (g)$	962.280	1.66
$Sc_2O_3(s) + 30$	$C(s) \rightarrow 2 Sc(s) + 3 CO(g)$	902.902	1.55
$Sc_2O_3(s)$	\rightarrow 2 Sc (s) + 3/2 O ₂ (g)	1556.290	2.69
CaO (s) + 1/2	$C(s) \rightarrow Ca(l) + 1/2 CO_2(g)$	311.786	1.62
CaO (s) + C (s) → Ca(l) + CO(g)	291.993	1.51
CaO(s)	\rightarrow Ca (1) +1/2 O ₂ (g)	509.789	2.70

Molten Salt Electrolysis

Fig. Schematic illustration of experimental apparatus for molten salt electrolysis.

Results

Cyclic voltammetry

Cathodic reaction WE: Mo, CE: C, Scan rate: ve = 100 mV / s Anodic reaction: WE: C, CE: Mo, Scan rate: $v_e = 100 \text{ mV} / \text{s}$ -0 1 Potential vs. quasi-Ni ref. E / V

Electrolysis

EPMA analysis

Sc segregated at the surface of the alloy sample. Precipitation of Al₄Ca was not observed

XRD analysis

Conclusion

Al-Sc alloy with low calcium contamination was successfully produced by the electrolysis of CaCl₂-Sc₂O₃ molten salt.

Results

XRD analysis

10 20 30 40 50 60 70 80 90 1 Angle, 2 θ / degree (c) Feed: Sc₂O₃, Reductant: Ca, Collector metal: AI, Flux: CaCl,

EPMA analysis

Conclusion

Al-Sc alloy was directly produced from Sc₂O₃ by using Al as the collector metal; however, excess Ca reductant remained in the alloy sample.