Electrochemical Behavior of Titanium Electrode in TMHA-Tf₂N, Room Temperature Molten Salt

Hidekazu Nakagawa, Kazuaki Tsuchimoto, Tetsuya Uda, Kuniki Murase and Yasuhiro Awakura
Department of Materials Science and Engineering, Kyoto University

Introduction

Electroplating of Titanium

Titanium has an excellent corrosion resistance, as it forms a strong passive film. However, the application of bulk titanium material is limited because it costs much to refine from one.

Electroplating of titanium layer on a common metal surface is very attractive. The redox reaction at around -0.15 V vs. I-/I₃⁻ on a titanium electrode was follows.

\[2H^+ + 2e^- \rightarrow H_2 \]

However, there is enough margin between oxidative decomposition of TMHA-Tf₂N and standard electrode potential of Ti/TiH₂. However, there is enough margin between oxidative decomposition of TMHA-Tf₂N and standard electrode potential of Ti/TiH₂.

Why anodic dissolution?

There is no reported titanium salt which can be dissolved in TMHA-Tf₂N. To feed titanium ion into TMHA-Tf₂N by anodic dissolution of a titanium electrode

Reason 1. It is easy to estimate the solubility of the titanium compounds combined with some anion in TMHA-Tf₂N.

Reason 2. There is not enough margin between reductive decomposition potential of TMHA-Tf₂N and standard electrode potential of Ti/TiH₂.

Reason 3. The kinetics of electrochemical dissolution of metals are similar to that of electrochemical deposition.

The purpose of the research

Investigating the anodic dissolution behavior of a titanium electrode in TMHA-Tf₂N.

Experimental

50 mM Ti(NH₄)₂TMHA-Tf₂N solution

Titanium or platinum

A platinum wire immersed in 15 mM NH₄F-Tf, Ni-TMHA-Tf₂N solution

Reference electrode

Hot plate

Stirrer bar

Working electrode

Counter electrode

Bath

Linear sweep voltammograms

Potentiostatic electrolysis at -1.0 V

Protonic diffusion coefficient in TMHA-Tf₂N

Protonic diffusion coefficient in TMHA-Tf₂N solution

And standard electrode potential of Ti/TiH₂

Potentiostatic electrolysis at -1.0 V

There is no difference in diffusion coefficient between protons and copper(I) (6 × 10⁻⁷ cm² s⁻¹ at 50 °C) in TMHA-Tf₂N.

Protons migrate not via Grotthuss mechanism but via Stokes mechanism in TMHA-Tf₂N.

Conclusions

The redox reaction observed at around -0.15 V vs. I_/I₃⁻ on the etched titanium electrode was follows.

Ti + xH⁺ + xe⁻ = TiHₓ

The protonic diffusion coefficient in TMHA-Tf₂N was calculated.

The value is 5–7 × 10⁻⁷ cm² s⁻¹. It is as same as that of Cu⁺.