

Development of Magnesium Powder Metallurgy Alloys

Paul Burke and Georges J. Kipouros

March 3, 2007

Materials Engineering Program
Process Engineering and Applied Science
Dalhousie University
1360 Barrington St., Halifax, NS, B3J 2X4

Outline

- Introduction
- Objective
- Methodology
- Experimental Procedure
- Results
- Conclusions
- Acknowledgments

Introduction

Introduction

Powder Metallurgy

Blending

Powder Metallurgy

Compaction

Powder Metallurgy

Stages of sintering

- » Point contact (A)
- »Initial stage (B)
- »Intermediate stage (C)
- » Final stage (D)

Research on Mg P/M

- Utilizing rapid solidification to produce unique alloys and fine grain structures
- High strain rate superplasticity
- Investigation of mechanical properties and formability
- Canned powder hot extrusion

Objective

 Determine optimum conditions for the industrially dominant uni-axial die compaction process to produce magnesium alloy components via powder metallurgy

Methodology

- Choose alloying elements
- Powder characterization
- Experimental design
 - Compaction pressure
 - Sintering temperature
 - Sintering time
 - Quench temperature

Methodology

Characterize samples

- Dimensional change
- -Density
- -Hardness
- -Microstructure
- Chemical composition
- -Tensile properties

Blending

Compacting

Sintering

- Alloy AZ31 (3% AI, 1% Zn)
 - Determine optimum process conditions

- Pure Magnesium
 - Fundamental sintering behaviour

- Pure Mg
 - Sieve powder into similar size categories
 - Compact with isostatic and uniaxial press
 - Sintering time and temperature

AZ31

- Experimental plan constructed to allow analysis with design of experiments (DOE) principals
 - Compaction Pressure
 - 300, 400, 500 MPa

- Sintering Temperature
 - 500, 550 and 600°C
- Sintering Time
 - 20, 40, 60 minutes
- Quench Temperature
 - 375°C and 450°C

Results - Pure Mg

Mg 98.6 %

MgO 1.32 %

Other 0.08 %

Results - Pure Mg

Green sample, 500 MPa compaction

Results - Pure Mg

 500 MPa compaction, sintered 500°C for 30min

Results - AZ31

 500 MPa compaction, sintered 550°C for 20min, quenched 450°C

Results - AZ31

Results

 Quantitative EDS shows presence of Carbon and Oxygen in samples

Element	Weight%	Atomic%
C K O K Mg K Al K Zn K	15.03 8.40 72.26 3.17 1.14	25.62 10.75 60.87 2.40 0.36
Totals	100.00	0.30

 X-Ray analysis of pure Mg samples shows no other elements

Conclusions

- Magnesium P/M has great potential
- Use of uni-axial die compaction relates to industrial applications
- Mechanical properties of ~90% dense PM samples similar to wrought product

Acknowledgments

 Natural Sciences and Engineering Research Council (NSERC) of Canada

- Minerals Engineering Centre and MATNET of Dalhousie University
- Dr. Georges Kipouros, Dr. Paul Bishop, Mr. Jason Milligan, Mr. Damien Fancelli

