Development of Magnesium Powder Metallurgy Alloys

Paul Burke and Georges J. Kipouros

March 3, 2007

Materials Engineering Program
Process Engineering and Applied Science
Dalhousie University
1360 Barrington St., Halifax, NS, B3J 2X4

3rd Reactive Metals Workshop, MIT
Outline

• Introduction
• Objective
• Methodology
• Experimental Procedure
• Results
• Conclusions
• Acknowledgments
Introduction

Aluminum

Magnesium
Introduction
Powder Metallurgy

- Blending
Powder Metallurgy

- Compaction
Powder Metallurgy

• Stages of sintering
 » Point contact (A)
 » Initial stage (B)
 » Intermediate stage (C)
 » Final stage (D)
Research on Mg P/M

- Utilizing rapid solidification to produce unique alloys and fine grain structures
- High strain rate superplasticity
- Investigation of mechanical properties and formability

- Canned powder hot extrusion
Objective

• Determine optimum conditions for the industrially dominant uni-axial die compaction process to produce magnesium alloy components via powder metallurgy
Methodology

- Choose alloying elements
- Powder characterization
- Experimental design
 - Compaction pressure
 - Sintering temperature
 - Sintering time
 - Quench temperature
Methodology

• Characterize samples
 – Dimensional change
 – Density
 – Hardness
 – Microstructure
 – Chemical composition
 – Tensile properties
Experimental Procedure

Blending

Compacting

Sintering
Experimental Procedure

• Alloy - AZ31 (3% Al, 1% Zn)
 – Determine optimum process conditions

• Pure Magnesium
 – Fundamental sintering behaviour
Experimental Procedure

• Pure Mg
 – Sieve powder into similar size categories
 – Compact with isostatic and uniaxial press
 – Sintering time and temperature
Experimental Procedure

- AZ31

- Experimental plan constructed to allow analysis with design of experiments (DOE) principals
 - Compaction Pressure
 - 300, 400, 500 MPa
Experimental Procedure

• Sintering Temperature
 – 500, 550 and 600ºC

• Sintering Time
 – 20, 40, 60 minutes

• Quench Temperature
 – 375ºC and 450ºC
Results - Pure Mg

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>98.6 %</td>
</tr>
<tr>
<td>MgO</td>
<td>1.32 %</td>
</tr>
<tr>
<td>Other</td>
<td>0.08 %</td>
</tr>
</tbody>
</table>

![Micrograph of Mg material with dimensions 200 μm](image-url)
Results - Pure Mg

- Green sample, 500 MPa compaction
Results - Pure Mg

• 500 MPa compaction, sintered 500ºC for 30min
Results - AZ31

- 500 MPa compaction, sintered 550°C for 20min, quenched 450°C
Results - AZ31

Experiment Number

Hardness (HRH)

- Theoretical Density
- Hardness
Results

- Quantitative EDS shows presence of Carbon and Oxygen in samples

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C K</td>
<td>15.03</td>
<td>25.62</td>
</tr>
<tr>
<td>O K</td>
<td>8.40</td>
<td>10.75</td>
</tr>
<tr>
<td>Mg K</td>
<td>72.26</td>
<td>60.87</td>
</tr>
<tr>
<td>Al K</td>
<td>3.17</td>
<td>2.40</td>
</tr>
<tr>
<td>Zn K</td>
<td>1.14</td>
<td>0.36</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

- X-Ray analysis of pure Mg samples shows no other elements
Conclusions

• Magnesium P/M has great potential

• Use of uni-axial die compaction relates to industrial applications

• Mechanical properties of ~90% dense PM samples similar to wrought product
Acknowledgments

• Natural Sciences and Engineering Research Council (NSERC) of Canada

• Minerals Engineering Centre and MATNET of Dalhousie University

• Dr. Georges Kipouros, Dr. Paul Bishop, Mr. Jason Milligan, Mr. Damien Fancelli