The 4th Workshop on Reactive Metal processing March 14-15, 2008, Massachusetts Institute of Technology, Cambridge, MA, USA

Reduction of Titanium Oxide in the Presence of Nickel by Supercooled Monatomic Hydrogen

Hidehiro Sekimoto, Tetsuya Uda, Yoshitaro Nose, Yasuhiro Awakura Department of Materials Science and Engineering Kyoto University, Japan

Today's contents

1. Introduction

✓ Titanium

 Thermodynamics for reduction of titanium oxide by hydrogen

2. Experimental and discussion

- Reduction of titanium oxide by supercooled monatomic hydrogen
- Reaction mechanism of molecular hydrogen and monatomic hydrogen
- 3. Summary

Today's contents

1. Introduction

✓ Titanium

- Thermodynamics for reduction of titanium oxide by hydrogen
- 2. Experimental and discussion
 - Reduction of titanium oxide by supercooled monatomic hydrogen
 - Reaction mechanism of molecular hydrogen and monatomic hydrogen
- 3. Summary

Titanium

Attractive features

- Excellent specific strength and corrosion resistance.
- Unique properties.

ex.) Ti-Ni alloy: Shape memory, Superelasticity.

- Production process
- Kroll process

 $TiO_{2} + C + CI_{2}$ Chlorination $\downarrow \rightarrow CO_{2}$ $TiCI_{4} + Mg$ Magnesiothermic reduction $\downarrow \rightarrow MgCI_{2}$ Vacuum distillation Ti

Low productivity High energy consumption

It is desired to develop a new production process.

Reduction of titanium oxide by hydrogen gas

Control chemical potential

 $\begin{array}{l} \hline \text{The Gibbs energy change for reduction of TiO}_2 \ \text{by hydrogen} \\ \hline \text{TiO}_2 + 2\text{H}_2 = \text{Ti} + 2\text{H}_2\text{O} \qquad \Delta G^\circ = +359.1 \ \text{kJ} \cdot \text{mol}^{-1} \ (1000 \ ^\circ\text{C}) \\ \Delta G = \Delta G^\circ + \text{R}T \ln \frac{a_{\text{Ti}} p_{\text{H}_2\text{O}}^2}{a_{\text{TiO}_2} p_{\text{H}_2}^2} \\ = \Delta G^\circ + 2.303 \ \text{R}T \left(\log a_{\text{Ti}} + 2\log p_{\text{H}_2\text{O}} - \log a_{\text{TiO}_2} - 2\log p_{\text{H}_2} \right) \end{array}$

Previous works

• Hydrogen reduction of TiO_2 in the presence of Pt at 1000 °C. TiO₂ + Pt (Ti : Pt = 1 : 3) Pt₃Ti

We can obtain metallic titanium with decreased activity in alloy. However, the proceed of reaction depended on how much the affinity between titanium and alloying element is.

• Hydrogen reduction of TiO_2 in the presence of Ni at 1000 °C. TiO₂ + Ni (Ti : Ni = 1 : 3) Ti₄O₇ + Ni

Control chemical potential

Previous works

Reduction of TiO₂ at 800 °C by low temperature hydrogen plasma

Optical micrograph of the cross section

(Huet et al)

This result clearly indicates that the partial pressure of hydrogen was hypothetically increased.

Objective in this study

Combining two previous studies (1) Alloying with nickel (Decrease log a_{Ti}) (2) Utilizing nonequilibrium hydrogen (Increase log p_{H_2})

Produce titanium nickel alloy by hydrogen reduction.

Reduction of titanium oxide in the presence of nickel by supercooled monatomic hydrogen was examined.

Today's contents

1. Introduction

✓ Titanium

 Thermodynamics for reduction of titanium oxide by hydrogen

2. Experimental and discussion

- Reduction of titanium oxide by supercooled monatomic hydrogen
- Reaction mechanism of molecular hydrogen and monatomic hydrogen
- 3. Summary

Supercooled monatomic hydrogen

Hot-wire method

Experimental Apparatus

Experimental procedure

TiO₂ powder + Ni powder

Mix by ball-milling	(8 hours)
Ti · Ni – 1 · 3	

Mixed powder

- Uniaxis press
- (412 MPa, 10 min.)

Sample pellet

Reduction

(H₂ flow rate = 100 ml·min⁻¹ Treatment time = 12 hours)

Reduced sample

Temperature conditions

Sampla	Temperature [°C]		
Sample	Sample	Filament	
F1000	1000	(1000)	
F2000	1000	2000	

Analysis

- X-ray diffraction analysis (XRD)
- Field emission scanning electron microscopy (FE-SEM)
- Energy-dispersive X-ray microscopy (EDX)

XRD analysis of reaction products

• Ni • TiO_2 • Ti_4O_7 • Ti_3O_5

Filament temperature: 1000 °C Ti₄O₇, Ni

Filament temperature: 2000 °C Ti₃O₅, Ni

TiO₂ was reduced to lower oxide by supercooled hydrogen gas including monatomic hydrogen than by usual hydrogen gas. 13

EDX analysis of reaction products

Secondary electron im Backscattered electron image of F1000

 Ti : 1.8 %
 Initial Ni : 98.2 %
 Ni : 4.7 %
 Initial Ni : 4.7 %
 Titanium oxide phase

 Ni : 31.8 %
 Initial Ni : 4.7 %

EDX analysis of reaction pruducts

Backscattered electron image (composition image)

Sample Ti concentration in Ni(ss) [at%]		 Ti concentration in Ni(ss) was independent of filament temperature 	
F1000	1.8 ± 0.5		
F2000	1.6 ± 0.4	Log a_{Ti} is not different	
		with each other.	

Phase diagram of Ti-Ni-O system

- Ti_4O_7 was observed by XRD
- Ti concentration in Ni(ss) by EDX was 1.8 at%.

Contradiction

Detectable depth in EDX and XRD analysis

Penetration depth of electron beam and X-ray

• Electron beam into nickel: 0.4 ~ 4 μ m.

EDX gives surface information.

• X-ray into the mixture of titanium oxide and nickel: 20 ~ 200 μ m.

XRD gives bulk information.

 Ti_3O_5 layer of F1000 might be too thin to be detected in XRD analysis.

Reaction mechanism

Reduction by supercooled monatomic hydrogen Absorption Deoxidation

Reduction rate: Monatomic Hydrogen >> Molecular hydrogen

By utilizing supercooled monatomic hydrogen, the reduction ability was kinetically enhanced and Ti_3O_5 layer grew wider.

Desorption

H₂O

Summary

• We could not obtain metallic titanium by reduction of titanium oxide in the presence of nickel by supercooled monatomic hydrogen. But we obtained the following findings.

Sampla	Tempera	ature [°C]	Detected phase	Ti concentration
Sample	Sample	Filament	by XRD	in Ni(ss) [at%]
F1000	1000	1000	Ti ₄ O ₇ , Ni	1.8 ± 0.5
F2000	1000	2000	Ti ₃ O ₅ , Ni	1.6 ± 0.4

- In bulk, titanium oxide obtained after reduction by supercooled hydrogen gas including monatomic hydrogen is different from the oxide obtained after reduction by usual hydrogen gas.
- The Ti concentration suggests that the chemical potential of oxygen on pellet surface is independent of filament temperature.
- Reduction rate by supercooled hydrogen gas including monatomic hydrogen is faster than that by usual hydrogen gas.
 As the result, the detected phase was different in bulk.