Preparation of β-FeSi₂ Films by Exchange Reaction Between Si Wafer and Molten Salts

The Univ. of Tokyo Institute of Industrial Science Morita lab.

Master Course SAKAMOTO Motohiro YONEYAMA Tsuyoshi Prof. MORITA Kazuki

Materials for optical devices

- III-V and II-VI compound semiconductors

 e.g. GaAs,CdSe
- Demerits
 - Harmful elements to human and environment
 - e.g. As,Cd
 - No adaptation to Si process

Fig. Various kinds of compound-semiconductors.

Reference HITACHI CABLE Homepage (http://www.densyou.co.jp/products/semico nductor/index.html)

What is β -FeSi₂

- Eco-friendly
 - Abundant on Earth
 - Harmless
- Semiconductor
 - Direct-bandgap (about 0.8eV)
 - Large light-absorption coefficient
 - Si-based devices application
 - High efficiency photovoltaic cell
 - Infrared Light Emitting Diode

Fig. Absorption coefficient of various semiconductors.

Difficulty in forming β-FeSi₂ crystal

- β -FeSi₂ stable under 1210K
- To form β -FeSi₂ crystal
 - Solid phase reaction between ϵ -FeSi and α -FeSi₂
 - Supercooling over 230K

Impossible to form β -FeSi₂ directly from Fe-Si binary liquid

Previous Studies

Various formation methods

- Ion beam synthesis
- Multilayer method
- Chemical vapor deposition etc.

Problem

- Slow deposition rate
- High energy (vacuum process)
- Unsuitable for mass production

Fig. SEM image(up) of Sample by IBS method. Maeda *et al.*

Methodology in this work

Exchange reaction between Si and FeCl₂

Use Si wafer itself as raw material

5Si(s) + 2FeCl₂(l) = SiCl₄(g) + 2 β -FeSi₂(s)

By-product SiCl₄ is in gas phase and leaves molten salts
Not interrupting the reaction

Controlling FeCl₂ vapor pressure

- Control FeCl₂ vapor pressure
- Formation of low melting point (<1210K) salts containing FeCl₂

Fig. Phase diagram of Fe-Si binary system.

NaCI-50at%KCI salts (m.p. 940K) containing FeCI₂

Controlling FeCl₂ vapor pressure

- Control FeCl₂ vapor pressure
- Formation of low melting point (<1210K) salts containing FeCl₂

NaCI-50at%KCI salts (m.p. 940K) containing FeCI₂

Objective of this work

- 1. To confirm exchange reaction between Si and NaCl-KCl-FeCl₂ salts
- 2. To investigate the growth of β -FeSi₂ layer by the reaction

Experimental Procedure 1

Formation Step

Experimental Procedure 2

Annealing Step

Formation of β -FeSi₂ on Si wafer

Reaction time :5 hours FeCl₂ concentration in molten salts : 0.02 at%

Fig. Cross-sectional SEM (up) image and XRD pattern (bottom) of the sample.

Confirmation of formation of β -FeSi₂ on Si wafer

Comparison with other methods

Reaction time :5 hours FeCl₂ concentration in molten salts :0.02 at%

Fig. SEM images of samples prepared by IBS (left) and this work (right)

Thicker layers were obtained by higher deposition rates

Effect of the FeCl₂ Concentration

Fig. Cross-sectional SEM images of samples

FeSi and β -FeSi₂ layers are formed by changing FeCl₂ concentration in molten salts

Single β -FeSi₂ layer formed by annealing to relax the difference of chemical potential between FeSi and β -FeSi₂?

Effect of annealing 1

Before

Reaction time :1 hour FeCl₂ concentration in molten salts : 1.0 at%

Fig. Cross-sectional SEM images (left) and XRD pattern (right) of samples

Effect of annealing 2

After

Annealing for 12hours

Fig. Cross-sectional SEM images (left) and XRD pattern (right) of samples

Formation of β -FeSi₂ single layer by annealing

Effect of crystal orientation

Reaction time :1 hour FeCl₂ concentration in molten salts :1.0 at%

Fig. Cross-sectional SEM images of samples

FeSi and β -FeSi₂ layers also on the Si(110)

Conclusion

- Formation of β -FeSi₂ Films on Si(100) wafer was succeeded
- FeSi and β -FeSi₂ layers are formed by changing FeCl₂ concentration in Molten salts
- Formation of single β -FeSi₂ layer was achieved by annealing FeSi and β -FeSi₂ layers
- FeSi and β -FeSi₂ layers is formed also on the Si(110)
- Thicker layers were obtained by higher deposition rates

Future work

 Evaluation of optical and electric properties of the obtained β-FeSi₂

• Investigation of the reaction mechanism and development of the process