タンタルなどのレアメタルスクラップの リサイクルについて

東京大学生産技術研究所 岡部研究室

峯田邦生

背景

生産量と需要

タンタルは貴重で需要の大きい 電子材料用のレアメタル

目的

- ・タンタルは希少で高価なレアメタル
- コンデンサの製造過程で
 相当量のオフスペック品が発生
- 効率の良い回収プロセスは
 現在存在しない
 (現状では鉱石として処理)
- スクラップ中のタンタルはニオブを 含まない良質な資源

低コストで高効率な リサイクルプロセスの開発が重要

Table Mass ratio of a capacitor component

	Mass ratio of each part (mass %)						
	Та	Epoxy resin	Terminal				
Ta capacitor	50	40	10				

タンタルが焼結体中に高濃度で存在

焼結体を機械的に取り出す

酸化によるタンタルの回収

エポキシ樹脂: ふるい分けによる分離 端子: 磁選またはリーチングによる分離

タンタルを酸化物として回収することに成功

焼結体回収プロセス

焼結体回収プロセス(続き)

Floatation / Flushing in water

TaOx, MjOx

MjOx

Waste solution

マグネシウム蒸気による還元

 $Ta_2O_5 + 5 Mg \rightarrow 2 Ta + 5 MgO$

T = 1273 K, 6 h

Fig. Schematic diagram of the experimental apparatus.

タンタル回収プロセス

タンタルの回収の結果

回収率: 90~92%

Fig. SEM image of tantalum recovered from capacitor scraps.

Table 1. Analytical result of tantalum powder recovered from tantalum capacitor scraps determined by ICP-AES analysis. The parenthetic data is estimated value.

	Concentration of element i, C i (mass %)						
	Та	Si	Cu	Ag	Fe	Mn	
Capacitor scrap	(40 ~ 50)	(10 ~ 20)	(~ 5)	(-)	(5 ~ 10)	(-)	
Recovered TaO _x	(80)	(-)	(-)	(-)	(-)	(-)	
Obtained Ta powder	98.57^{*1}	0.93	0.07	0.16	0.25	0.02	

^{*1}: Value determined by balancing the analyzed solute concentration.

回収したタンタルの純度は約99%
主な不純物はシリコン

電子材料用途にはさらに高純度化が必要

塩化物スクラップを用いた 塩化による高純度化

回収したTaの高純度化

チタン精錬からの廃棄物

クロール法

 $\frac{塩化工程…チャン鉱石から高純度のTiCl₄を製造$ TiO₂ + C + 2 Cl₂ → TiCl₄ + CO₂

還元工程…TiCl₄をMgで還元しスポンジチタンを製造 TiCl₄ + 2 Mg → Ti + 2 MgCl₂

電解工程…MgCl₂を電解し、MgとCl₂を製造 MgCl₂ → Mg + Cl₂

チタン鉱石中に含まれる不純物が塩化され 塩化鉄を主成分とする副生物が大量に発生し 現状では<u>廃棄されている</u>

問題点

- ・廃棄物の処理コスト、環境負荷
- ・塩化物として系外に排出される塩素のロス

高効率の塩素サイクルを実現する タンタルの塩化精製プロセスの開発

塩化鉄中の塩素の回収

塩化鉄中の塩素を用いたタンタルの精製

特徴:

・安価にタンタルを塩化することができる

・塩化物廃棄物を減量できる

・チタンなど他のレアメタルに応用可能

さらに・・・

将来的には鉄分を多く含む安価な低品位の チタン鉱石をチタン精錬に使用可能になる 可能性がある

Fig. Predominance diagram for Ta-Cl-O system under chloride partial pressure.

高い塩素分圧下で炭素を系内に加えると Ta₂O₅は塩化され TaCl₅が生成する

熱力学的検討(蒸気圧)

Fig. Vapor pressure of the chlorides of iron, tantalum, and silicon as a function of reciprocal temperature.

生成した塩化物の温度を適切に制御することで 高純度の TaCl₅を分離・回収することが可能 熱力学的検討(塩化反応)

FeCl₃および炭素を用いて Ta₂O₅が塩化され TaCl₅が生成する

Fe / FeCl₂ 平衡下では Ta₂O₅ が安定であるが TaCl₅ は蒸気圧が高いため条件によっては 塩化反応が進行する可能性がある 金属Taの塩化反応

Fig. Three-dimensional chemical potential diagram for Ta-Fe-Cl system at 900 K.

FeCl₂によるTaの塩化実験

 $2 \text{ Ta}(s) + 5 \text{ FeCl}_2(s) = 2 \text{ TaCl}_5(g) + 5 \text{ Fe}(s)$

反応装置:

Fig. Experimental apparatus for chlorination using FeCl_2 as a chlorine souce.

分析結果

XRD分析結果 残渣: Feの生成を確認 ○ : FeCl₂
× : Fe Intensity, / (a, u) 20 30 40 80 10 60 70 50 Fig. XRD pattern of a residual after reaction. 析出物:低温部にTaCl₅が凝縮 △: TaCl₅ ntensity, I (a, u) 10 80 30 70 50 60 20 40 Fig. XRD pattern of obtained sample.

TaCl₅中のFeの濃度:約 300 ppm (ICP分析結果)

チタンへの応用

チタンへの応用

system at 1100 K.

Fig. Chemical potential diagram for Fe-Ti-Cl system.

まとめ

コンデンサからのタンタルの回収 タンタルコンデンサを高温の大気中で酸化する手法 で90%以上の歩留まりで99%程度の純度のタンタル を回収することに成功した

タンタルの塩化による高純度化

コンデンサより回収したタンタルをチタン精錬からの 塩化鉄スクラップ中の塩素を利用し塩化できることを 熱力学的に示した

 $FeCl_2$ 中の塩素によってタンタルを塩化し、 $TaCl_5$ が得られることを実験的に示した

Ta₂O₅

Та

TaCl₅