New Production Process of Nb Powder by Preform Reduction Process

Junichi Kubo and Toru H. Okabe

Institute of Industrial Science, The University of Tokyo, Japan
Background

Miniaturization and high performance of mobile equipment

Miniaturization and high capacity of electronic parts

Demand of Ta capacitor is expanding.
- small
- high capacitance
- high thermal stability

(a) Quantity

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANTALUM</td>
<td>5.0%</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>2.0%</td>
</tr>
<tr>
<td>CERAMIC</td>
<td>93.0%</td>
</tr>
</tbody>
</table>

(b) Cost

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM</td>
<td>8.0%</td>
</tr>
<tr>
<td>TANTALUM</td>
<td>40.0%</td>
</tr>
<tr>
<td>CERAMIC</td>
<td>52.0%</td>
</tr>
</tbody>
</table>

Fig. Market share of capacitors in computer market.
Comparison between Nb and Ta

<table>
<thead>
<tr>
<th></th>
<th>Niobium</th>
<th>Tantalum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol of element</td>
<td>Nb</td>
<td>Ta</td>
</tr>
<tr>
<td>Atomic number</td>
<td>41</td>
<td>73</td>
</tr>
<tr>
<td>Atomic weight</td>
<td>92.9 g/cm³</td>
<td>180.9 g/cm³</td>
</tr>
<tr>
<td>Density</td>
<td>8.56 g/cm³</td>
<td>16.65 g/cm³</td>
</tr>
<tr>
<td>Melting point</td>
<td>2468 °C</td>
<td>2980 °C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>4758 °C</td>
<td>5534 °C</td>
</tr>
<tr>
<td>Resistivity(20°C)</td>
<td>12.5 Ω·cm</td>
<td>12.4 Ω·cm</td>
</tr>
<tr>
<td>Clarke number</td>
<td>2 × 10⁻³ (34th)</td>
<td>1 × 10⁻³ (40th)</td>
</tr>
<tr>
<td>World production</td>
<td>23000 ton</td>
<td>2300 ton</td>
</tr>
<tr>
<td>Demand in Japan</td>
<td>3900 ton</td>
<td>550 ton</td>
</tr>
<tr>
<td>Price (in round numbers)</td>
<td>55 $/kg</td>
<td>700 $/kg</td>
</tr>
</tbody>
</table>

Nb with reference to Ta
- Production volume: 10 times larger
- Price: less than 1/10

Nb is emerging as a substitute material of Ta for use in capacitor.
Necessity for fine powder

Capacitance (C)

\[C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot S}{d} \]

- \(C \): capacitance
- \(\varepsilon_0 \): absolute permittivity of free space
- \(\varepsilon_r \): relative permittivity of dielectric
- \(S \): specific surface area
- \(d \): plate distance (dielectric thickness)

High specific surface area leads to high capacitance.

Fine particle is necessary to produce high-capacitance capacitor.
Preform Reduction Process (PRP)

\[\text{Nb}_2\text{O}_5 + 5 \text{Mg} \rightarrow 2 \text{Nb} + 5 \text{MgO} \]

Features

- Fine and homogeneous powder obtainable
- No emission of waste solution containing fluorine
- Flexible scalability
- Small amount of molten salts required
- (semi-) Continuous and high-speed process
Purpose of this study

Production of fine Nb powder by PRP

- Influence of vapor pressure of reductant on Nb particle size and surface area

Investigation on new process for increasing surface area of Nb powder

- Alloying and dealloying treatment by metal vapor
Flowchart of PRP

1. Mixing / Casting
2. Preform fabrication
3. Mixing / Casting
4. Feed preform
5. Calcination
 - 1273 K, 3 h
6. Reduction
 - 1273 K, 6 h
7. Reduced preform
8. Leaching
 - Acid
 - Water
 - Alcohol
 - Acetone
 - LS
 - S
 - L
 - Waste solution
9. Vacuum drying
10. Nb powder

Materials:
- Nb₂O₅
- Flux
- Binder

Steps:
- Nb₂O₅
- Flux
- Binder
- Nb powder
Results (particle size distribution)

Particle size was decreased when using Mg-Ag alloy as a reductant.

<table>
<thead>
<tr>
<th>Reductant</th>
<th>Particle size distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_{10} / μm</td>
</tr>
<tr>
<td>Pure Mg</td>
<td>2.91</td>
</tr>
<tr>
<td>Mg-Ag alloy</td>
<td>2.40</td>
</tr>
</tbody>
</table>

- Pure Mg
- Mg-Ag alloy
Results (specific surface area measurement)

\[\frac{1}{Q\left(\frac{P}{P_0}\right) - 1} = \frac{C - 1}{Q_m C} \left(\frac{P}{P_0} \right) + \frac{1}{Q_mC} \]

- \(P \) : equilibrium pressure of adsorption
- \(P_0 \) : saturation pressure of gas
- \(Q \) : amount of adsorption at \(P \)
- \(Q_m \) : amount of monolayer adsorption
- \(C \) : BET constant

Mg vapor pressure in the reaction system was decreased by alloying, and supply rate of Mg was suppressed.

Specific surface area was increased by using Mg-Ag alloy.

<table>
<thead>
<tr>
<th>Reductant, (R)</th>
<th>Amount of monolayer adsorption, (Q_m)</th>
<th>BET constant, (C)</th>
<th>Specific surface area, (S / \text{m}^2 \cdot \text{g}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Mg</td>
<td>1.12</td>
<td>94.42</td>
<td>4.98</td>
</tr>
<tr>
<td>Mg-Ag alloy</td>
<td>2.12</td>
<td>98.81</td>
<td>9.21</td>
</tr>
</tbody>
</table>
Alloying and dealloying treatments

Alloying

- Nb powder + alloying element (X)
- Nb-X alloy

Dealloying

- Surface treated Nb powder
- Acid dissolution (dealloying)

Equipment

- TIG welding
- Stainless steel reaction chamber
- Nb powder
- Ta crucible
- Crucible stage
- Stainless steel reaction capsule
- Alloying element, X = Zn
- Ti sheet
- Ti sponge getter
- Mg lump

Process

- Heating (alloying by X Vapor)
- Acid dissolution (dealloying)
Results

XRF analysis

<table>
<thead>
<tr>
<th>Concentration of element i, C_i (mass%)</th>
<th>Nb</th>
<th>Zn</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>Ti</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>after Zn alloying</td>
<td>76.0</td>
<td>23.7</td>
<td>0.06</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td>0.22</td>
</tr>
<tr>
<td>after acid dissolution</td>
<td>99.6</td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td><0.01</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Zn was dissolved and removed by leaching.

Specific surface area measurement

<table>
<thead>
<tr>
<th>Sample</th>
<th>Specific surface area, $S / m^2 \cdot g^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before treatment</td>
</tr>
<tr>
<td>A</td>
<td>1.61</td>
</tr>
<tr>
<td>B</td>
<td>7.25</td>
</tr>
</tbody>
</table>

When Nb powder with low surface area was used as a starting material, specific surface area of powder was increased after the alloying and dealloying treatments.
Summary

- Nb powder with high specific surface area and low particle size was obtained by PRP using Mg-Ag alloy as a reductant.
- Specific surface area of Nb powder was increased by Zn vapor alloying and acid dealloying treatment.

Future work

Search for higher specific surface area at dealloying treatment
- More efficient wet process
- Vacuum distillation
- Use of Mn or other metals as an alloying element
- Simultaneous process for preform reduction and alloying