New Titanium Production Process

High-speed Titanium Production Process Using Titanium Subhalides

Environmentally Sound Process Utilizing Titanium Scraps

High-speed Ti production process

Ti production process using Ti subhalides \((\text{TiCl}_x, \ x = 2, \ 3 \) \)

- \(\text{TiCl}_x(l,\ g) + \text{Mg}(l,\ g) \rightarrow \text{TiCl}_x(s,\ l) + \text{MgCl}_2(l) \)
- \(\text{TiCl}_x(l,\ g) + \text{Ti}(s,\ \text{scrap}) \rightarrow \text{TiCl}_x(s,\ l) \)

Step 1: Production and enrichment of \(\text{TiCl}_x \)

\[\text{TiCl}_4(l,\ g) + \text{Mg}(l,\ g) \rightarrow \text{TiCl}_x(s,\ l) + \text{MgCl}_2(l) \]

Step 2: High-speed reduction of \(\text{TiCl}_x \)

- \(\text{TiCl}_x(s,\ l) + \text{Mg}(l,\ g) \rightarrow \text{Ti}(s) + \text{MgCl}_2(l,\ g) \)

- **Utilization of Ti scraps**

- **High-speed reaction**

Step 3: Removal of reaction product \(\text{MgCl}_2 \)

- **High-purity Ti can be produced.**

- **Ti vessel together with product Ti can be directly melted without crushing.**

Features and experimental result

Comparison of Kroll process and new process

<table>
<thead>
<tr>
<th></th>
<th>Kroll process</th>
<th>New process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process type</td>
<td>Batch-type, limited speed</td>
<td>(Semi-)Continuous, high-speed</td>
</tr>
<tr>
<td>Feed material</td>
<td>(\text{TiCl}_4(l,\ g)) \quad \text{TiCl}_2, \text{TiCl}_3(s,\ l))</td>
<td></td>
</tr>
<tr>
<td>Heat of reduction</td>
<td>High ((\Delta H = -434 \ \text{kJ mol}^{-1})) \quad Low ((\Delta H = -94 \rightarrow -191 \ \text{kJ mol}^{-1}))</td>
<td></td>
</tr>
<tr>
<td>Reactor material</td>
<td>Mild steel (Iron contamination unavoidable)</td>
<td>Titanium (No iron contamination)</td>
</tr>
<tr>
<td>Reactor size</td>
<td>Large (Crush and melt)</td>
<td>Small (No crush and direct melt)</td>
</tr>
<tr>
<td>Flux, sealant</td>
<td>Not used</td>
<td>Ti, MgCl_2</td>
</tr>
</tbody>
</table>

Common features

- Magnesiothermic reduction of chlorides
- Removal of MgCl_2 and Mg from Ti sponge by vacuum distillation
- Production of high-purity Ti with low oxygen content

Obtained Ti sponge

- Ti with 99.2% purity was efficiently obtained using Ti vessel.

Feasibility of new Ti production process based on the magnesiothermic reduction of Ti subhalides using Ti vessel was demonstrated.

Resource Recovery and Materials Process Engineering Laboratory

Okabe Lab.

Institute of Industrial Science, The University of Tokyo