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Overview

• ICME brief intro
• Thermodynamics: Gibbs Project
• Other tools:

– Phase field: RheoPlast
– Statistical mechanics: ATAT
– Ab initio: abinit

• Summary
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Motivations for ICME

• Product design cycle: 2-4 years
• Materials design cycle: 10-20 years!
• Application-specific materials development 

is impossible, hence materials selection
• New materials models and model 

integration accelerate development
• Broaden design space with application-

specific materials
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Geometry

• Geometric flexibility 
allows shape 
optimization for a 
given part's needs

• ICME: do the same 
for materials design

ICME p. 41
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Engineering Systems 
Approach (N. Suh)



8CICME/Van der Velden
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Computational Materials

• Tools: DFT, MD, MC, crystal plasticity, 
OOF, thermo, phase field, FEM

CICME/Doyle
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Linking Strategies

• Direct full coupling: very difficult, narrow 
utility

• Weak coupling: large-scale models call 
smaller-scale ones as needed

• Databases: store results of small-scale 
models for later retrieval

• Use models to “fill in the gaps” e.g. Ceder 
alloy intermetallic prediction
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Linking Strategies

• Direct full coupling: very difficult, narrow 
utility

CICME/Doyle
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Brittle Fracture Simulation

http://physci.llnl.gov/divisions/hdivision/EOS_MaterialsTheory/ourStaff/Rudd/GrandChallenge/grandChall.html

Fracture in micron resinator
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ICME Databases

• Store small-scale 
simulation results 
for large-scale 
model use

• Large-scale models 
“pull” data as 
necessary by 
interpolation or 
modeling

ICME p. 86
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Ford Virtual Aluminum Casting

ICME p. 41
Simulate changes with new
alloys—and processes!
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Open Source ICME Tools

• Current capabilities:
– Ab initio DFT quantum mechanics: abinit
– Statistical mechanics: ATAT
– CALPHAD Thermodynamics: Gibbs*
– Molecular dynamics: LAMMPS
– Phase field structure formation: RheoPlast
– Macroscopic mechanics: OOF, several others

• Needed:
– Property prediction e.g. crystal plasticity
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CALPHAD Thermodynamics

• CALculate PHAse Diagrams
• Estimate energy parameters by theory and 

experiments
• Single component to binary, ternary, etc. 

interaction coefficients
• Share free energy functions with phase 

field models
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Gibbs Project

• Why no open source thermodynamics?
• What would we do with open source 

thermodynamics?
– Informatics, automated DFT, vector/tensor

• Adam Powell, Edwin Garcia, Raymundo 
Arroyave

• Calculate phase diagrams from free energy 
functions

• Proof-of-concept ternary calculator
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Gibbs Algorithm

• Start with a grid of points
• Calculate free energy and derivatives at 

each point
– Repeat for each phase

• Calculate the convex hull of all points
• Identify multi-phase facets, refine them
• Send data to visualization
• Very fast!
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Gibbs Output

• “Solid” with 
miscibility gap and 
“liquid”

• Eutectic sliver and 
three-phase region
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Next Steps

• Full temperature-composition phase 
diagrams

• Optimal fit to experimental data
• Python front-end
• Informatics: thermo & diffusion data format

– Illinois Institute of Technology IMI proposal

• ATAT integration
• Anisotropic thermodynamics...
• http://teaching.matdl.org/teachingarchives/wiki/Ternary
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Phase Field Modeling

• Useful for modeling multi-phase systems 
with interfaces undergoing topology change
– Solve one equation everywhere
– No need to create or move an interface
– “Diffuse interface” arises from equations
– Maximize entropy or minimize free energy

Thermodynamics
Kinetics

Transport}→{
Phase
 transformations
Structure
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Diffuse Interface

• Free energy:
F = ∫ [β g(C) + ½ α |∇C|2] dV

• Homogeneous ~ 
thickness

• Grad penalty ~ 
1/thickness

• Result:
σ ~ (αβ)1/2

ε ~ (α/β)1/2
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Why Diffuse Interface?

• Physical interpretation: rough interface, 
solute trapping, spinodal decomposition

• Facilitates topology changes
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Phase Field
Examples

Solidification
Dendrite
James Warren, NIST
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RheoPlast Phase Field Code

• Parallel FD infrastructure based on PETSc
• Modules:

– Binary/ternary Cahn-Hilliard
– Vector-valued Allen-Cahn
– Navier-Stokes: V-P, V-ω
– Electrical potential
– Shear strain

• Full coupling between modules permits 
numerous simulation possibilities
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Polymer Membrane Casting

Five snapshots in an immersion
precipitation simulation
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3-D Electromigration

• Anode instability 
decay

• Cathode instability 
growth

• Short circuit
• Connection breaks
• Interface 

breakdown
• Broken oxide
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Benchmark: Stability Analysis

• Barkey et al. 1989: 
growth of a 
sinusoidal cathode 
perturbation

• Simulation: fix 
wavelength, test 
critical voltage and 
surface tension



31

Stability Analysis: Viscosity

• Dimensionless 
viscosity: Schmidt 
number μ/ρD

• High viscosity 
behaves like a solid

• Low viscosity: new 
stability criterion
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Fluid-Structure Interactions

• Navier-Stokes equations in fluid, elastic 
mechanics in solid

• Match traction,
displacement
at interfaces

• Example: blood
flow, membrane
as elastic solid
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Phase Field+FSI Applications

• Semi-solid metals
• Electrodeposition with cross-flow
• Polymer membrane structure with moving 

solids
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FSI with Phase Field

• Lagrangian and ALE methods:
– Nodes move with fluid or solid
– Nodes with boundary comprise interface
– Different equations in different phases

• Phase field:
– No sharp boundary between fluid and solid
– Same equation everywhere

• Combination: Mixed Stress method
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FSI/Phase Field First Cut

• Assume incompressible fluid and solid
• Pressure enforces incompressibility

• Newtonian fluid, solid with pure shear

• Coupling between velocity, vorticity, strain

• Fields: velocity, pressure, shear strain
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Impinging Particles

Composition: XX Strain: XY Strain:
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Impinging Particles

Composition: XX Strain: XY Strain:
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Impinging Particles

Composition: XX Strain: XY Strain:
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Impinging Particles

Composition: XX Strain: XY Strain:
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Anisotropic Growth+Motion

With rotation:



41

ATAT

• Calculate ground states by ab initio/DFT
• Entropy calculations:

– Cluster expansion to estimate configurational
– Phonon band structure for vibrational
– Electron band structure for electronic

• Feed free energy to CALPHAD and Phase 
Field codes

• Problem: difficult to run!
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Ab Initio/DFT

• Multiple atom → 
multiple electron → 
single electron

• Calculate energy, 
entropy, electron & 
phonon band 
structure

• Weaknesses: slow; 
oxides and liquids 
not accurate
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Summary

• Integrated Computational Materials 
Engineering promise to reduce materials 
cycle time, deliver part-specific materials 
design

• Expanded design space could result in 
significant performance improvement

• Open Source tools here now and under 
development cover much of this space
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