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Outline of the lecture

where do metals come from? 

needs of the current technology 

radical innovation
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Selected Properties of Structural Metals

Fe Al Mg

m.p. (ºC) 1535 660 650

b.p. (ºC) 2860 2518 1093

ρ (g/cm3) 7.87 2.70 1.74

E (GPa) 211 71 45

E /ρ 27 26 26
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Selected Properties of Structural Metals

Fe Al Mg Ti

m.p. (ºC) 1535 660 650 1675

b.p. (ºC) 2860 2518 1093 3260

ρ (g/cm3) 7.87 2.70 1.74 4.51

E (GPa) 211 71 45 116

E /ρ 27 26 26 26
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Selected Properties of Structural Metals

Fe Al Mg Ti Li

m.p. (ºC) 1535 660 650 1675 181

b.p. (ºC) 2860 2518 1093 3260 1342

ρ (g/cm3) 7.87 2.70 1.74 4.51 0.53

E (GPa) 211 71 45 116 4.9

E /ρ 27 26 26 26 9.2
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Selected Properties of Structural Metals

Fe Al Mg Ti Be

m.p. (ºC) 1535 660 650 1675 1287

b.p. (ºC) 2860 2518 1093 3260 2469

ρ (g/cm3) 7.87 2.70 1.74 4.51 1.85

E (GPa) 211 71 45 116 287

E /ρ 27 26 26 26 155155
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Selected Properties of Structural Metals

Fe Al Mg

capacity (106 tpy )  800 25 0.60

price ($/kg) 0.40 1.85 3.40

sales (109 $) 320 46 2.0

abundance  (%) 4.1 8.2 2.3

(rank) 4 3 7

-∆fGMxOy
(kJ/mol O2) 503 1055 1138

(kJ/g M) 6.7 29 23
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Selected Properties of Structural Metals

Fe Al Mg Ti Li

capacity (106 tpy )  800 25 0.60 0.10 625*

price ($/kg) 0.40 1.85 3.40 10 80

sales (109 $) 320 46 2.0 1.0 0.05

abundance  (%) 5.0 8.2 2.1 0.66 0.0017

(rank) 4 3 8 9 22

-∆fGMxOy
(kJ/mol O2) 503 1055 1138 889 1122

(kJ/g M) 6.7 29 23 19 40
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Major Aluminum Producing Countries

nameplate capacity 
(103 tpy) 

U.S.A. 4200
China 3900
Russia 3400
Canada 2800
Australia 1900 
Brazil 1300
Norway 1100
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Where do metals come from? 

occur naturally as compounds

beneficiated high-purity feed

reducing agents: H, C, M, e-

options for alumina reduction?
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Where do metals come from? 

0 500 1000 1500 2000 (ºC)



Sadoway The University of Tokyo                         July 9, 2004

Hall-Héroult electrolysis

electrolyte:  Na3AlF6 - AlF3 - CaF2

feed:  Al2O3

temperature:  970°C

anode:  carbon

anodic reaction:  3 O2- +  1.5 C  1.5 CO2 +  6 e-

cathode:  carbon

cathodic reaction:  2 Al3+ +  6 e- 2 Al

overall reaction:  Al2O3 +  1.5 C  2 Al  +  1.5 CO2

standard potential:  E° =  1.2 V
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Where it all began
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Where it all began
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Where it all began
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needs of current technology 

drivers: 

cost

environmental compliance
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environmental drivers 



Sadoway The University of Tokyo                         July 9, 2004

Prospective changes: a wish list

new electrode materials –
inert anodes & wettable cathodes 

new electrolyte chemistries –
“low-ratio” bath

lower energy consumption

reduced emissions

1000 kA cell: economy of scale?
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Properties of an inert anode

* physically stable at service temperature

* resistant to attack by fluoride electrolyte

* resistant to attack by pure oxygen

* electrochemically stable

* electronically conductive 

* resistant to thermal shock

* mechanically robust

* easy to deploy (electrical connection to bus, 
startup, power interruptions, …)

* affordable
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The Materials Menu

* ceramics

* cermets

* metals

* coatings
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Ceramic Anodes
☺ advantages

* fully oxidized ∴stable with hot O2

/ concerns
* electronic conductivity
* solubility in cryolite
* thermal shock resistance
* mechanical stability
* operational challenges

. examples
* SnO2

* ferrites, spinels, perovskites
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The Materials Menu

* ceramics

* cermets

* metals

* coatings
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Cermet Anodes 
(ceramic/metallic composites)

☺ advantages
* combine features of ceramics and metals,

i.e., chemical inertness + 
high electronic conductivity

/ concerns
* phase boundaries
* solubility in cryolite
* thermal shock resistance
* mechanical stability
* manufacturing net shapes
* operational challenges
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Cermet Anodes 
(ceramic/metallic composites)

. examples

* metal dispersion in a ceramic matrix, 
e.g., copper, nickel, silver in a 

nickel ferrite matrix, NiFe2O4

� ceramic provides bulk, 
offers chemical stability

� metal confers conductivity & toughness
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Metal Anodes 
(ceramic/metallic composites)

☺ advantages
* combine features of ceramics and metals, 

i.e., chemical inertness + 
high electronic conductivity

* high electronic conductivity 

(more uniform current distribution)

* thermal shock resistance

* mechanically robust

* easy to fabricate & deploy

* self-repairing in service
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Metal Anodes 
(ceramic/metallic composites)

/ concerns
* stability of surface film

. example

* thin oxide film on surface of metal alloy, 

e.g., Al2O3 on Cu – Al (90:10 by mass) 

� alloy provides bulk, 

confers high electrical conductivity

� surface film protects alloy from chemical 
destruction by reaction with Hall bath 
and oxygen
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Metal Anodes 
(ceramic/metallic composites)

100% Cu99% Cu96% Cu

93% Cu90% Cu85% Cu
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Metal Anodes 
(ceramic/metallic composites)
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Metal Anodes 
(ceramic/metallic composites)
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Metal Anodes 
(ceramic/metallic composites)
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attributes of dynamic surface film: 
reaction layer

* reaction layer is self repairing, 
i.e., self forming in service

* nca is dynamically stable in service: 
chemistry, electrochemistry, adhesion, …

* designed to thrive in Hall cell environment

* reduced contact resistance of connections 

* superior conductivity ratio, κth/κel
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these reaction layers are not coatings

there are only two kinds of coatings:

* made imperfect

* become imperfect in service

∴ only a self repairing coating is acceptable
reaction layer
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status report: taking the pulse

* what are the prospects for 
delivery of the inert anode?

“Prediction is very difficult, 
especially about the future.”

- Niels Bohr
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Radical innovation 

remember the menu of reducing agents

assume that alumina is the feed

assessment options:

laboratory curiosity (not scalable)

technical success (economic failure)

disruptive technology (new era 0)



Sadoway The University of Tokyo                         July 9, 2004

Ellingham diagram: oxides

carbothermic
reduction

H2 reduction
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Ellingham diagram: oxides

0 500 1000 1500 2000 (ºC)
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Radical innovation 

carbothermic

metallothermic

electrochemical

plasma

00000
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Government response 
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Government response 
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Government response 
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Government response 
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Government response 
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Government response 
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Government response 
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Government response 
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Government response 
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carbothermic reduction of alumina

Al2O3 +  3 C  3 CO  +  2 Al( ) (T>2000ºC)
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Ellingham diagram: oxides

carbothermic
reduction

H2 reduction
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carbothermic reduction of alumina

Al2O3 +  3 C  3 CO  +  2 Al( ) (T>2000ºC)

☺ attractiveness: 

lower energy consumption

improved economy of scale

/ technical issues:

materials of construction

temperature 

back reaction (losses & impurities) 
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electrolytic-calciothermic reduction

0 500 1000 1500 2000 (ºC)

CaO

Al2O3
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electrolytic-calciothermic reduction

electrolyte: CaO - CaCl2

cathode: 3 Ca2+ +  6 e- 3 Ca

3 Ca  +  Al2O3 3 CaO +  2 Al

anode: 3 O2- + 1.5 C  1.5 CO2 +  6 e-

3 O2- 1.5 O2 +  6 e- (preferably)
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electrolytic-calciothermic reduction

☺ attractiveness: 

improved economy of scale

lower energy consumption

/ technical issues:

materials of construction

CHCs inert anode
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metallothermic reduction

conventional wisdom:
strictly a chemical reaction 
rate limited by mass transfer 

our hypothesis:
not strictly a chemical reaction 
electron transfer is involved

metallothermic redn is an 
electronically mediated reaction

(EMR)
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metallothermic reduction
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metallothermic reduction

3 Ca  +  Al2O3 3 CaO +  2 Al

from an EMR perspective:

reaction medium or “melt”: CaO - CaCl2
which is a mixed conductor (e- & Mn+)

oxidation:   3 Caº(melt) 3 Ca2+(melt) +  6 e-(melt)

reduction: 2 Al3+(oxide) +  6 e-(melt) 3 Alº(liquid)
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metallothermic reduction

3 Ca  +  Al2O3 3 CaO +  2 Al

from an EMR perspective:

reaction medium or “melt”: CaO - CaCl2
which is a mixed conductor (e- & Mn+)

oxidation:   3 Caº(melt) 3 Ca2+(melt) +  6 e-(melt)

reduction: 2 Al3+(oxide) +  6 e-(melt) 3 Alº(liquid)

very fast kinetics ☺
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molten oxide electrolysis

electrolyte:  MgO - CaO - BaO - La2O3

feed:  Al2O3

temperature:  1800°C

anode:  ???

anodic reaction:  3 O2- 1.5 O2 +  6 e-

cathode:  ???

cathodic reaction:  2 Al3+ +  6 e- 2 Al

overall reaction:  Al2O3 2 Al  +  1.5 O2

standard potential:  E° =  1.74 V
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schematic of prototype cell
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molten oxide electrolysis

☺ attractiveness: 

improved economy of scale

environmentally sound

/ technical issues:

materials, materials, materials
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molten oxide electrolysis
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molten oxide electrolysis
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database is incomplete

physical chemistry of electrolytes

materials science of electrodes
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feasibility assessment:

electrical conductivity measurements 

transference number measurements

modeling electrical properties

applicability to iron production
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conductivity measurements

inventing two new techniques for 
aggressive melts at high temperatures:

moveable coaxial cylinders

4-point crucible
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moveable coaxial cylinders
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solvent compositions

FeO additions to S1
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effect of FeO addition: σ = σ(T, c) 
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electrowinning experiments

galvanostatic electrolysis at 1450°C 

(-) Cu( ) | FeO – MgO – CaO – SiO2 | Pt (+)

electrolytic generation of iron metal 
and oxygen gas confirmed
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2 µm

laboratory-scale electrolysis cell
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2 µm

laboratory-scale electrolysis cell
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observations

• Faradaic efficiency (anodic)
�measured value 39%
� theoretical limit 85% (te)

• electrolysis products
anode : oxygen 
cathode : iron
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observations
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applicability to lunar oxygen generation

daily oxygen requirement  =  2.75 kg
Faradaic efficiency  =  85% (based on tionic)
current  =  452 A

cell voltage  =  2 V (2.5 × ∆HFeO)
power supply  =  904 W
current density  =  5 A cm-2

electrode area  =  90 cm2
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plasma processing

2 approaches:

thermochemical
electrolytic

☺ attractiveness: 

avoids certain materials problems
environmentally sound

/ technical issues:

poor energy efficiency
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So, what have we learned today?

“I’ve learned a lot in sixty-three years. But, unfortunately, 
almost all of it is about aluminum.”

© 1977 The New Yorker Magazine, Inc.
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magnesium chloride electrolysis

electrolyte:  NaCl - KCl - CaCl2

feed:  MgCl2

temperature:  740°C

anode:  carbon

anodic reaction:  2 Cl- Cl2 +  2 e-

cathode:  mild steel

cathodic reaction:  Mg2+ +  2 e- Mg

overall reaction:  MgCl2 Mg( ) +  Cl2

standard potential:  E° =  2.5 V
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challenges and opportunities

* new electrode materials (inert):
reduce C loss in Dow cell
enable longer-lived bipolar cell

* new route to anhydrous MgCl2

* new electrolyte chemistries

* lower energy consumption

* reduced emissions

* higher space/time yield
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paradigm shifts

* electrolysis of MgO from a melt of NdCl3

* carbothermic reduction to metal

* electrolytic-calciothermic redn

* electrolysis of MgO from an oxide melt
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2 MgO +  2 NdCl3 2 NdOCl +  2 MgCl2

electrolyte: 65% MgCl2 - 10% NdCl3 - 25% NdOCl

cathode reaction:  2 Mg2+ +  4 e- 2 Mg

anode reaction:  C  +  2 OCl3- 2 Cl- +  CO2 +  4 e-

-R.A. Sharma, General Motors

electrolysis of MgO from a melt of NdCl3
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carbothermic reduction

MgO +  C  Mg(g) +  CO   (T > 1854ºC)

/ separation of Mg and CO, both gases '

. alloy Mg into solvent melt ?



Sadoway The University of Tokyo                         July 9, 2004

electrolytic-calciothermic reduction

electrolyte: CaO - CaCl2

cathode: 3 Ca2+ +  6 e- 3 Ca

3 Ca  +  3 MgO 3 CaO +  3 Mg

anode: 3 O2- + 1.5 C  1.5 CO2 +  6 e-

3 O2- 1.5 O2 +  6 e- (preferably)
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molten oxide electrolysis

electrolyte:  CaO - La2O3

feed:  MgO

temperature:  1900°C

anode:  ???

anodic reaction:  ½ O2- O2 +  2 e-

cathode:  ???

cathodic reaction:  Mg2+ +  2 e- Mg(g)

overall reaction:  MgO Mg(g) +  ½ O2

standard potential:  E° =  1.47 V
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lithium chloride electrolysis

electrolyte:  LiCl - KCl eutectic

feed:  LiCl

temperature:  400 - 460°C

anode:  carbon 

anode reaction:  Cl- ½ Cl2 +  e-

cathode:  mild steel

cathode reaction:  Li+ +  e- Li( )

overall cell reaction:  LiCl Li( ) +  ½ Cl2

standard potential: Eº =  3.6 V at 427°C
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carbothermic reduction

(lithia feed, carbon reductant)

Li2O  +  C  2 Li(g) +  CO 

(LiOH feed, carbon reductant)

6 LiOH +  2 C  2 Li(g) +  2 Li2CO3 +  3 H2

(LiOH feed, iron carbide reductant)

3 LiOH +  FeC2 3 Li(g) +  Fe  +  3/2 H2 +  CO  +  CO2
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electrolytic-calciothermic reduction

electrolyte: CaO - CaCl2

cathode: Ca2+ +  2 e- Ca

Ca  +  Li2O  CaO +  2 Li

anode: O2- + ½ C  ½ CO2 +  2 e-

O2- ½ O2 +  2 e- (preferably)
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metallothermic reduction

oxide feed:

2 Li2O  +  2 CaO  +  Si  4 Li(g) +  Ca2SiO4 (Pidgeon)

3 Li2O  +  2 Al  6 Li(g) +  Al2O3

hydroxide feed:

2 LiOH  +  2 Mg  2 Li(g) +  2 MgO  + H2

2 LiOH  +  Al  Li(g) +  LiAlO2
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molten oxide electrolysis

electrolyte:  CaO - MgO - SiO2 - Al2O3

feed:  Li2O

temperature:  1400°C

anode:  ???

anodic reaction:  ½ O2- O2 +  2 e-

cathode:  ???

cathodic reaction:  2 Li+ +  2 e- 2 Li(g)

overall reaction:  2 Li2O  2 Li(g) +  ½ O2

standard potential:  E° =  1.9 V
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molten oxide electrolysis

electrolyte:  CaO - MgO - BaO - Al2O3

feed:  TiO2

temperature:  1700ºC

anode:  ???

anodic reaction:  2 O2- O2 +  4 e-

cathode:  ???

cathodic reaction:  Ti4+ +  4 e- Ti( )

overall reaction:  TiO2 Ti( ) +  O2

standard potential:  Eº =  1.53 V
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… in summary

lithium and titanium prices out of line
situation ripe for innovation:

- new chemistry 
- fewer unit operations
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… in summary

lithium and titanium prices out of line
situation ripe for innovation:

- new chemistry 
- fewer unit operations
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… in summary

shift away from C + Cl2
∴ thermochemistry/
electrochemistry ☺

lithium and titanium prices out of line
situation ripe for innovation:

- new chemistry 
- fewer unit operations

sustainable metallurgy requires
paradigm shifts 0

major role for research in molten salts!major role for research in molten salts!
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Towards sustainability through better technology


