

技術革新により レアメタルをコモンメタルに変える

2005/11/15 岡部 徹 0511_012_Okabe_Dream_1.ppt

012_Dream_j 2005_Okabe_Lab_j チタンの新製造プロセスの開発

チタンの低級塩化物を利用するチタンの新しい高速還元法の開発 チタンスクラップもリサイクル可能な環境調和型プロセス

チタンの新高速製造プロセス サブハライド(TiCl_x, x = 2, 3)を 経由するチタンの新製造プロセス $\text{TiCl}_{4}(l, g) + \text{Mg}(l, g) = \text{TiCl}_{4}(s, l) + \text{MgCl}_{2}(l)$ $TiCl_{4}(l, g) + Ti(s, scrap)$ $TiCl_{x}(s, l)$ $\operatorname{TiCl}_{s}(s, l) + \operatorname{Mg}(l, g) = \operatorname{Ti}(s) + \operatorname{MgCl}_{2}(l, g)$

高純度チタン ④ 加熱装置 の製造が可能 シテタン容器 ··─ TiCl_v+Mg (+MgCl₂+Ti)

ステップ3: 副生成物の高速分離・除去

プロセスの特徴と研究成果 クロール法と本プロセスの比較

	クロール法	本プロセス	
プロセス 形態	バッチ式、 高速化に限界	(半)連続式、 高速化可能	
原料	TiCl ₄ (気相)	TiCl ₂ , TiCl ₃ (凝縮相)	
反応熱 <i>∆H</i> / kJ molTi	-434 (発熱大)	- 94 ~ - 191 (発熱小)	
反応容器	軟鋼(鉄汚染が 避けられない)	チタン (鉄汚染が無い)	
容器サイズ	大型 (破砕工程必要)	小型 (破砕工程不要)	
反応助剤	特に無し	Ti , MgCl ₂	
共通点	塩化物のマグネシウム熱還元 副生成物の真空分離が可能 低酸素濃度のチタンの製造が可能		

TiCl。をマグネシウムで還元し 副生成物を高速除去する実験

チタン製容器を 使用して効率良く 純度99.2%程度の チタンを製造した

現在、新規な要素 技術の開発に 取り組んでいる

チタン製の反応容器を用いる チタン塩化物の新還元プロセスの 実現が可能であることを実証した

循環資源・材料プロセス工学研究室

2005/11/15 竹田修 0511_011_Ti_subhalide.ppt

õ

岡部研究署 東京大学·生産技術研究所 011_Ti_j 2005 Ti subhalide

ユアン ボヤン 0511_010_Nb_Ta_EP.ppt

東京大学・生産技術研究所

010_Nb_Ta_j.ppt 2005 Nb Ta EP

2005/11/15 鄭 海菰 0511_009_Ti_scrap.ppt

東京大学・生産技術研究所

009_Ti_j 2005_Ti_scrap

貴金属の高効率回収法の開発

2005/11/15 大川 ちひろ 0511_008_PGM_scrap.ppt

岡部研究室 東京大学·生産技術研究所

008_PGM_j 2005_PGM_scrap

チタン鉱石から直接チタンを製造する方法の開発

2005/11/15 尾花 勲 0511_007_Ti.ppt **岡部研究室** 東京大学·生産技術研究所 007_Ti_j 2005_Ti スカンジウムの新製造プロセスの開発

レアメタルの中でも特に稀(レア)な元素スカンジウムの新製造プロセスの開発 還元と同時にアルミニウムと合金化しAI-Sc合金を直接製造

2005/11/15 原田 正則 0511_006_Sc.ppt **岡部研究室** 東京大学·生産技術研究所 006_Sc_j 2005_Sc 電子材料用ニオブ・タンタル粉末の新製造技術の開発

プリフォーム還元法によるコンデンサ用Nb粉末の新しい製造プロセス

藤田康平(久保淳一) 0511_005_Nb_Ta_PRP.ppt

東京大学·生産技術研究所

2005 Nb Ta PRP

チタンの新製造法の開発(PRP)

新しいプロセス技術を開発し、チタンを「コモンメタル」に変える

循環資源・材料プロセス工学研究室

2005/11/15 真下 , 伊藤(鄭) 0511_004_Ti_PRP.ppt **岡部研究室** 東京大学·生産技術研究所 004_Ti_j 2004_Ti_PRP

チタンの新製造法の開発(EMR)

チタンの新製造プロセスの要因原理の研究と新手法の開発 資源的に豊富な「レアメタル」を「コモンメタル」に変える

クロール法と本プロセスの特徴

クロール法の特徴	EMR / MSE法の特徴
高純度チタンの製造が可能	酸化物からの直接還元
塩素とMgサイクルの確立	鉄・炭素汚染に強い
高効率なMg電解	プロセスの(半)連続化が可能
還元と電解工程が独立	還元と電解工程が独立
× バッチ式プロセス	× Ca還元剤を利用する
× プロセスが複雑	× 金属と塩の分離が難しい
× 製錬速度が非常に遅い	× セルの構造が複雑
× 巨大な発熱反応	プロセスが複雑

得られたチタン粉末の分析結果

	元素濃度 <i>i</i> , C _i (質量%)					
	Tia	Caª	Cla	Ob		
EMR1_a	99.7	0.19	(0.09)	0.25		
EMR1_b	99.6	0.18	(0.15)	0.37		
EMR2	99.7	0.21	(0.08)	-		

^a: 蛍光X線分析装置(XRF)による測定 (検出限界: 300 ppm)

^b: 不活性ガス中溶解赤外吸収分光法 2500 ppmO (LECO)による測定

> Cuを含まない純度99.7%の 均一なチタンが得られた

循環資源・材料プロセス工学研究室

2005/11/15 安孫子 貴 (尾花 勲) 0511_003_Ti_EMR.ppt 岡部研究室

003_Ti_j 2004_Ti_EMR

東京大学·生産技術研究所

スクラップからのタンタルのリサイクル コンデンサから希少で高価なタンタルを効率よく分離・回収する 環境調和型プロセスの開発 タンタルコンデンサの特徴 タンタルのリサイクル タンタルコンデンサの構造 コンデンサを高温で酸化処理し デンサ タンタル焼結体を露出させた 難燃性エポキシ樹脂 SiO。粉末が配合された高分子 酸化後、エポキシ樹脂はSiO。を 主成分とする粉末に変化した タンタル焼結体 タンタル粉末を焼結した素子 Fe. Ni端子は磁選で分離した コンデンサ重量の約40% 鵔化後の を占める タンタル焼結体は酸化後も 金属製の端子 形状を保持していた Ni, Fe, or Cu 滋選で<u>分離</u>した タンタルコンデンサの構造模式図 磁選後の試料 Ta (アノード) Ta₂O₅ (誘電体) 陰極リード 陰極層 粉末のSiO。は 機械的に分離した 陽極リード MnO₂ (カソード) グラファイト 試料を粉砕し、ふるいにかけ Ag Ag (接着用) 劉炳丁にタンタル焼結体 粉砕後も形状を保持している 銅端子を分離した タンタル焼結体の断面図 タンタル粉末(アノード) タンタルリード(アノード) Сцій $MnO_{2}(\pi V - F)$ Ta_2O_5 (誘電体) 酸化タンタル 酸でリーチング処理し コンデンサ素子 不純物を溶解除去しタンタルを 酸化物(Ta₂O₅)として回収した 断面 タンタルの タンタル焼結体がコンデンサの電極の役割を果たす 99%程度の ・タンタルコンデンサは他のコンデンサに比べ 金属タンタルの 単位体積当たりの容量が大きい 製造に成功 高性能 ・高い安定性を持つ コンデンサ タンタルは希少で高価なレアメタル コンデンサ中のタンタル粉末焼結体を コンデンサからタンタルを効率よく 効率よ (回収する技術の開発は重要 分離・回収するプロセスを確立した 循環資源・材料プロセス工学研究室

2005/11/15 峯田 邦生 (竹田 修) 0511_002_Ta_scrap.ppt

岡部研究室

東京大学·生産技術研究所

002_Ta_j 2003_Ta_scrap

レアメタルの新製造法の開発

新しいプロセス技術を開発し、 「レアメタル」を「コモンメタル」に変える

東京大学·生産技術研究所