Challenges and Opportunities in Titanium Metal Production

Is there still any interest/need to replace Kroll production?

Kevin Dring
Chief Technology Officer
kevin.dring@scatec.no

Norsk Titanium AS
Sommerrogaten 13-15
NO-0255 Oslo
Norway

Presentation outline

• Brief introduction to Scatec and Norsk Titanium
• Market and applications of titanium
• Extractive and physical metallurgy
• Conventional processing of Ti via the Kroll process
• Alternative extraction methods for Ti metal
 – Possible reagents and reductants
• Detailed discussion of selected processes
• Conclusions
Vision
To be profitable and make the world a little cleaner

Business Idea
Develop new technology to produce renewable energy and advanced materials

History of Scatec

- SCATEC established in 1987 by Alf Bjørseth (100%)
- PhotoCure established in 1997 (Oslo Exchange)
- SCATEC established solar energy successes which merged as Renewable Energy Corp (REC) in 2000, went public in 2006, trading at Oslo Exchange
- Established:
 - Norsk Titanium in 2004
 - NorSun in 2005
 - Thor Energy in 2006
 - Scatec Solar in 2007
 - Scatec Adventure in 2007
 - NorWind in 2007
 - OceanWind 2008
 - Scatec Power 2008
Industrial Macro Trends

Advanced materials
- Titanium
- Nano carbon

Climate neutral energy
- Solar energy
- Thorium
- Offshore wind
- CO₂ capture

Electrification of transport
- El car
- Battery technology

Why Norway?

Norwegian titanium mineral resources are large.

- Igneous deposits composed of ilmenite, magnetite, and apatite
- Rutile-bearing eclogites in western Norway
- Proterozoic Rutile-bearing rocks in the Bambrie region

Tellines ilmenite deposit is the largest Ti-Fe orebody in Europe and 2nd most important in the world (after Lake Tío in Québec, Canada).
Ti Market and applications

Mechanical:
- specific strength, fatigue

Chemical:
- corrosion resistance & biocompatibility

Physical:
- CTE similar to composites, non-magnetic, shape memory effect

Ashby diagrams

Titanium microstructures can be optimised to suit the application:

- HCF & LCF versus K_{IC} & dA/dN versus static properties

Reference: Ashby 1992
Ti metallurgy

High stability for Ti-O phases
Very low activity coefficient for dissolved O in both α- and β-Ti

Max O-content in Ti alloys:
4000 ppm in unalloyed (CP)
2500 ppm in standard grades
1300 ppm in ELI

Reference: Murray 1987, Donachie 1988

Kroll production of Ti metal

180 000 tpa FBR
12 ton batch, 400 tpa

1500 tpa cell

Reference: Toho 2009
Conventional production

10-15 $/kg

- Titanium sponge
- Pressing
- Rolling
- Forging

15-25 $/kg

- Manufacture of electrodes
- Double rolling
- Bloating

30-40 $/kg

- Rolling mill
- Slab
- Hot rolled coil

- Cold rolled coil

- Sheet product
- Welded tube
- Heavy plate

50-70+ $/kg

- Seamless tube
- Bar

Alternative processes

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Comments</th>
<th>Reductant</th>
<th>Process</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>Via TiCl₄? – pigment</td>
<td>[Ca], Ca(liq)</td>
<td>OS/BHP</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td>Limited availability</td>
<td>Ca(g)</td>
<td>PRP</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td>Environmentally friendly?</td>
<td>e⁻ - low T</td>
<td>FFC</td>
<td>Powder, sponge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e⁻ - high T</td>
<td>MIT/QIT</td>
<td>Liquid</td>
</tr>
<tr>
<td>Impure TiO₂</td>
<td>May use cheaper feedstock?</td>
<td>e⁻</td>
<td>MER</td>
<td>Dendrites</td>
</tr>
<tr>
<td></td>
<td>Suitable for inert anode?</td>
<td>Al</td>
<td>various</td>
<td>Granules</td>
</tr>
<tr>
<td>TiCl₄</td>
<td>CO/CO₂/CHC emissions?</td>
<td>Mg</td>
<td>Kroll</td>
<td>Sponge</td>
</tr>
<tr>
<td></td>
<td>High purity (5N+)</td>
<td>Na - batch</td>
<td>Hunter</td>
<td>Sponge</td>
</tr>
<tr>
<td></td>
<td>Restricted feedstocks</td>
<td>Na - cont</td>
<td>ITP</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca</td>
<td>JTS</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂</td>
<td>SRI</td>
<td>Granules</td>
</tr>
<tr>
<td>TiClₓ</td>
<td>Via TiCl₄?</td>
<td>Mg</td>
<td>Sub-chloride</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td>Ti recycling?</td>
<td>e⁻</td>
<td>GTT/EW</td>
<td>Dendrites</td>
</tr>
</tbody>
</table>

- Ti recycling?
Alternative processes

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Comments</th>
<th>Reductant</th>
<th>Process</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>Via TiCl₅ – pigment Limited availability Environmentally friendly?</td>
<td>[Ca], Ca(lq)</td>
<td>OS/BHP</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca(g)</td>
<td>PRP</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e⁻ - low T</td>
<td>FFC</td>
<td>Powder, sponge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e⁻ - high T</td>
<td>MIT/QIT</td>
<td>Liquid</td>
</tr>
<tr>
<td>Impure TiO₂</td>
<td>May use cheaper feedstock? Suitable for inert anode?</td>
<td>e⁻</td>
<td>MER</td>
<td>Dendrites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al</td>
<td>various</td>
<td>Granules</td>
</tr>
<tr>
<td>TiCl₄</td>
<td>CO/CO₂/CHC emissions? High purity (5N+) Restricted feedstocks</td>
<td>Mg</td>
<td>Kroll</td>
<td>Sponge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na - batch</td>
<td>Hunter</td>
<td>Sponge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na - cont</td>
<td>ITP</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca</td>
<td>JTS</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂</td>
<td>SRI</td>
<td>Granules</td>
</tr>
<tr>
<td>TiClₓ</td>
<td>Via TiCl₅? Ti recycling?</td>
<td>Mg</td>
<td>Sub-chloride</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e⁻</td>
<td>GTT/EW</td>
<td>Dendrites</td>
</tr>
</tbody>
</table>

Internation Titanium Powder

Continuous Na reduction of TiCl₄

Pros: Simplistic process (equip & chem)
\[
\text{TiCl}_4 + 4\text{Na} \rightarrow \text{Ti} + 4\text{NaCl}
\]
\(T_{mp} \text{ NaCl} = 801^\circ \text{C} \quad T_{bp} \text{ Na} = 883^\circ \text{C}\)
Cons: Post-processing to increase p.s.
Na-loop may be uneconomic
Status: Scaled up to tonne production

Reference: Crowley 2003
Sub-chloride process

Mg reduction of TiCl₂ investigated at University of Tokyo (IIS) & Waseda

Pros:
Relatively "known" process
High purity reagents

\[\text{Ti} + \text{TiCl}_4 \rightarrow \text{MgCl}_2 \rightarrow 2\text{TiCl}_2 \]

\[2\text{Mg} + 2\text{TiCl}_2 \, (\text{in MgCl}_2) \rightarrow 2\text{Ti} + 2\text{MgCl}_2 \]

Cons:
\[\text{TiCl}_4 \] generation

Ti product morphology & recycle

Status: Lab scale

The impurity constituents in the button-melted specimen are, in weight percent, 0.022 N, 0.34 Fe, 0.104 Ni, 0.145 Cr, 0.048 Ti, 99.4. It appears that the titanium

Reference: Fuwa 2005

JTS – Osaka/Toho Titanium

Ca reduction of TiCl₄ through modified OS process

Pros:
High purity Ti feedstock
Powder product

\[2\text{Ca} + \text{TiCl}_4 \rightarrow \text{Ti} + \text{CaCl}_2 \]

Cons:
Max solub 1wt% TiCl₄ in CaCl₂
C.E. of CaCl₂ electrolysis

Ti particle size (<1μm)

Status: No announcement of scale-up

Reference: WO 06/040978

11. The process for production of a metal by molten-salt electrolysis according to claim 1,

wherein the molten salt consists of calcium chloride, sodium chloride, barium chloride, and lithium chloride.

12. The process for production of a metal by molten-salt electrolysis according to claim 1,

wherein a titanium tetrachloride supplying pipe is arranged in the inner area in which the metal is generated by the molten-salt electrolysis,
MIT – Elkem process

Dissolved TiO$_2$ in O & F-based melt

Pros:
- Liquid product
- Possible use of cheaper feedstocks
- Amenable to inert anode

\[\text{TiO}_2 + 4e^- \rightarrow \text{Ti(liq)} + 2\text{O}^2- \]

Cons:
- e$^-$ conductivity of Ti$_2$O$_3$ & Ti$_3$O$_5$
- Materials of construction
- Ti product purity

Status: Bench scale

OS/FFC/BHP/DeOx

Solid state reduction of TiO$_2$-MO$_x$ in fused salt electrolyte

Reference: Kraft 2004, Metalysis 2009
Pros: Novel alloying capabilities
Possible alternative feedstock materials (non-pigment ores)
Low oxygen contents

Cons: Low current efficiency and cathodic current density
Solid state diffusion of oxygen rate limiting

Status: Scaled-up for Ta, Ti research ongoing at Metalysis

Ongoing research:
Intermetallic inert anode $\text{Al}_{70}\text{Ti}_{25}\text{Cu}_5$
>2-12 wt% Fe, Ni \rightarrow 2+ phases from SEM
Loss of AlCl_3 via gas phase
Boron Doped Diamond (BDD)
Expensive production method
Low current density and high background currents

Oxycarbide anode

Anodic dissolution of carbothermically reduced Ti ores

Pros: Cheaper feedstocks
 High purity product

\[\text{TiO}_2 + C \rightarrow \text{TiO}_x\text{C}_y + \text{CO} \quad (x \approx y \approx 0.5) \]
\[\text{TiO}_x\text{C}_y \rightarrow \text{Ti}^{n+} + n\text{e}^- + \text{CO}_x \quad \text{(anode)} \]
\[\text{Ti}^{n+} + n\text{e}^- \rightarrow \text{Ti} \quad \text{(cathode)} \]

Cons: Ti product morphology
 Low cathod current density

Status: MER scale-up to 50kg/d

Effect of TiCl\textsubscript{3} additions to NaCl-KCl melt at 1073K
5-electrode configuration
Potential controlled bulk electrolysis
- voltammetry to analyse melt

Clear shift from Ti3+ to Ti2+

Reference: Kjos 2008
Oxycarbide anode

• Successful manufacture of TiO$_2$C$_x$ anodes in laboratory scale from TiO$_2$ slag (TINIOS), with the optimal properties to be used in an electrolytic process for titanium production.

• Production of titanium metal (laboratory scale) from the equimolar mixture NaCl-KCl using Ti cathodes and TiO$_2$C$_x$ anodes made from TiO$_2$ slag powders.

• Very low oxygen content of the metal product.

• Develop a vacuum distillation process of the cathode product.

• Cathode product from Ti(II) ions gave titanium particles 30-40 µm size, with some "fines" (1-5 µm) and very reactive cathode product.

• Cathode product from Ti(III) ions gave small particle size (it is mainly "fine" powder, 1-3 µm, with some "flakes" as 40-µm length).

• Purity of the Ti obtained with respect to other metals (V, Si and Fe) and C is still an open question.

• CE (Ti® basis and recovered product at the cathode): 30-40%.

Reference: Martinez 2008

Conclusions

• Kroll process has not been replaced.

• New processes have largely been tested only at lab scales.

• Ti particle size and specific energy consumption (kWh/kg Ti) have not been satisfactory for existing applications.
Future research

• Ore selection dependent on upgrading operation
 – Chlorination flash vs fluid bed
 – Carbothermic presence of alloying elements, radioactive species

• Chloride-based routes offer highest purity (metallothermic or EW)
• Parallels to Al- and Mg- electrolysis? Liquid product?

• Or… Kroll with incremental changes?
 – Larger batch sizes with better heating/cooling
 – Modified reactor design

Acknowledgements

• SINTEF: Ana Maria Martinez, Egil Skybakmoen, Karen S Osen
• NTNU: Geir Martin Haarberg, Ole S Kjos

• Norwegian Research Council Project 176734/i40 “Miljøvennlig produksjon av metaller basert på ny deoksyderingsprosess”
References

A Fuwa, JOM, Oct 2005, pp56-60

A Jha, *Producion Method and Producing Device by Molten Salt Electrolysis*

O S Kjos, NFR Project Meeting - 176734/i40 Miljøvennlig produksjon av metaller basert på ny deoksideringsprosess

Y Kudo, *Electrochemical Behavior of a Boron-doped Diamond Electrode in Molten Salts Containing Oxide Ion*, MS8 2008, Kobe, Japan

A M M Martinez, NFR Project Meeting - 176734/i40 Miljøvennlig produksjon av metaller basert på ny deoksideringsprosess

World Patent 06/040978 – “Metal Producing Method and Producing Device by Molten Salt Electrolysis”

Contact details: Kevin Dring

kevin.dring@scatec.no

Norsk Titanium AS

Sommerrogaten 13-15

NO-0255 Oslo, Norway

Upcoming conferences

TMS 2010 - Lower Cost Titanium Symposium

- explore all areas of the Ti metal production process to lower costs
 - Upstream: ore & metal extraction
 - Downstream: melting, non-melt processing, post-production operations
- 5-6 symposia, 14-18 February, 2010, Seattle

2nd International Round Table on Titanium Production in Molten Salts

- Fall 2010, Trondheim, Norway
- Exact date to be determined