

Challenges and Opportunities in Titanium Metal Production

Is there still any interest/need to replace Kroll production?

Kevin Dring Chief Technology Officer kevin.dring@scatec.no

Norsk Titanium AS Sommerrogaten 13-15

NO-0255 Oslo

Norway

Presentation outline

- Brief introduction to Scatec and Norsk Titanium
- Market and applications of titanium
- Extractive and physical metallurgy
- · Conventional processing of Ti via the Kroll process
- · Alternative extraction methods for Ti metal
 - Possible reagents and reductants
- · Detailed discussion of selected processes
- Conclusions

The Scatec Platform

Vision

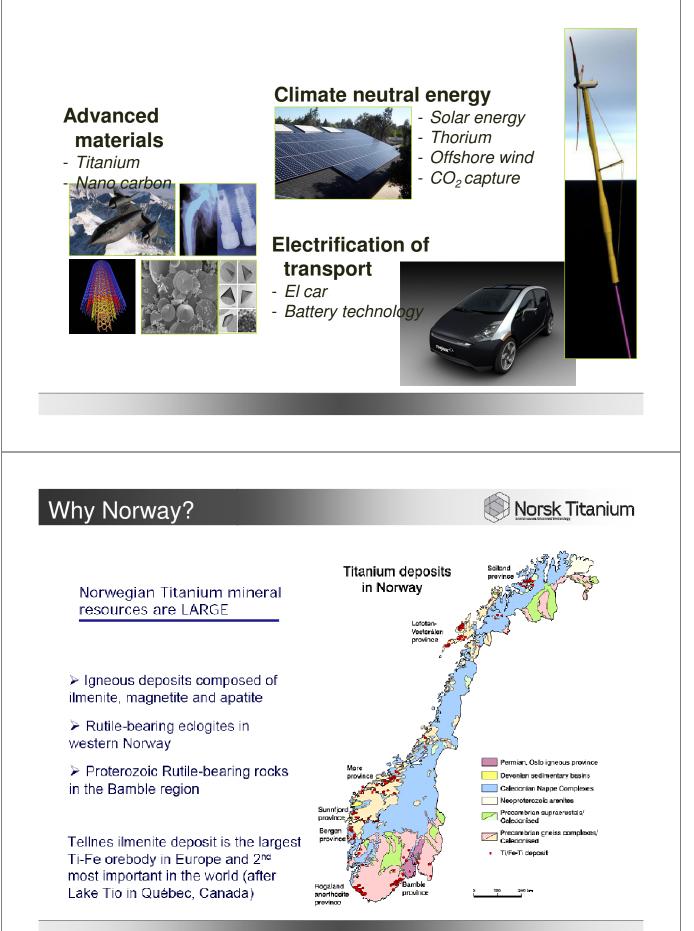
To be profitable and make the world a little cleaner

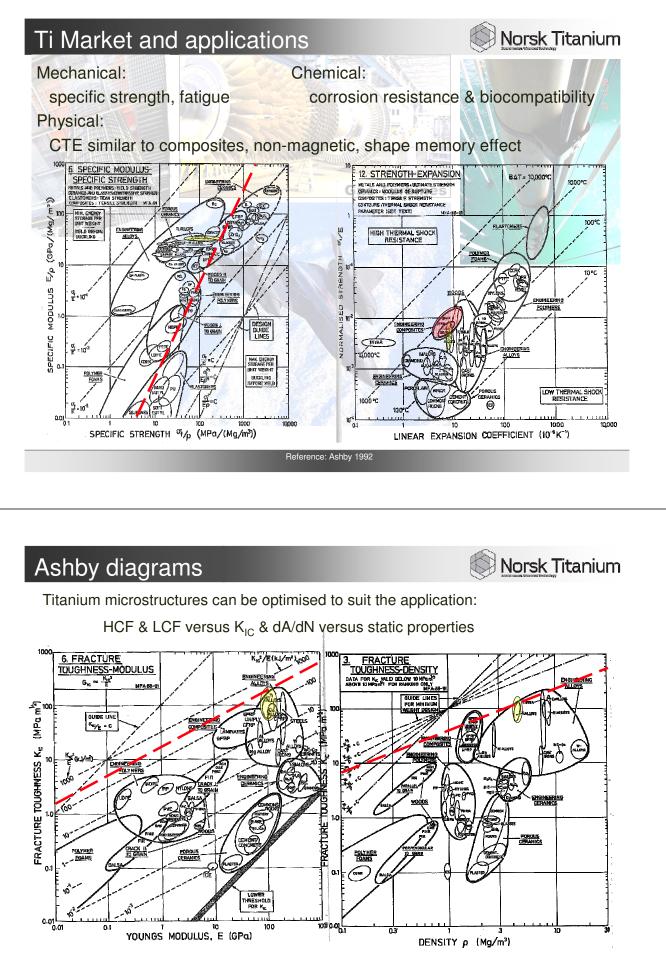
Business Idea

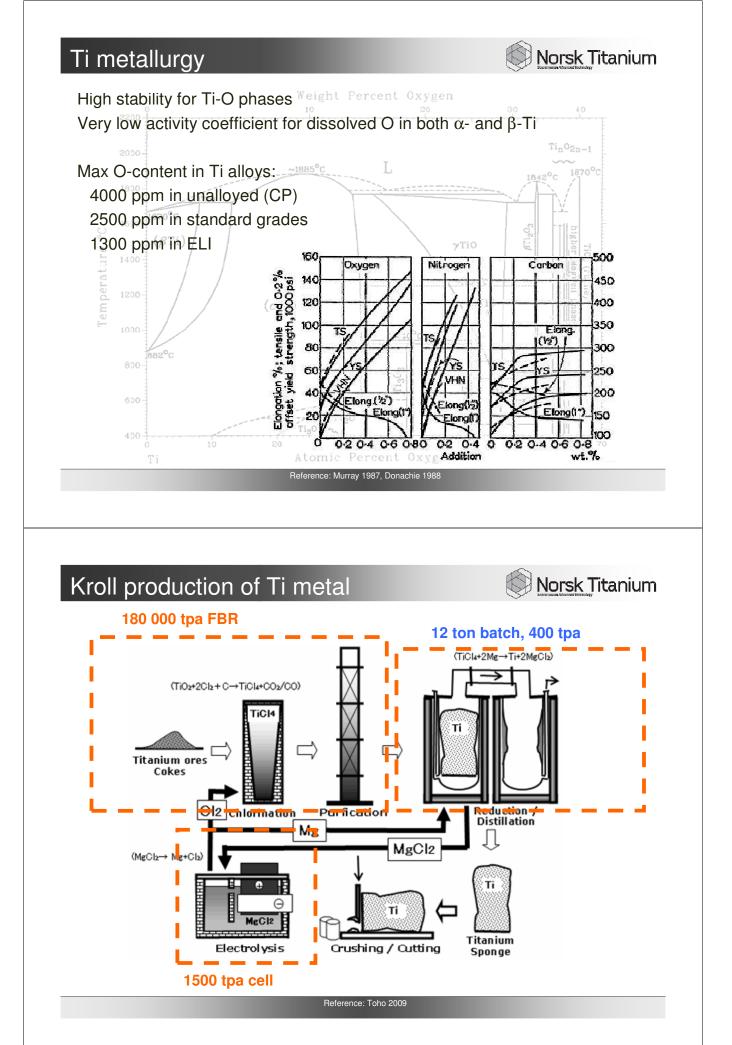
Develop new technology to produce renewable energy and advanced materials

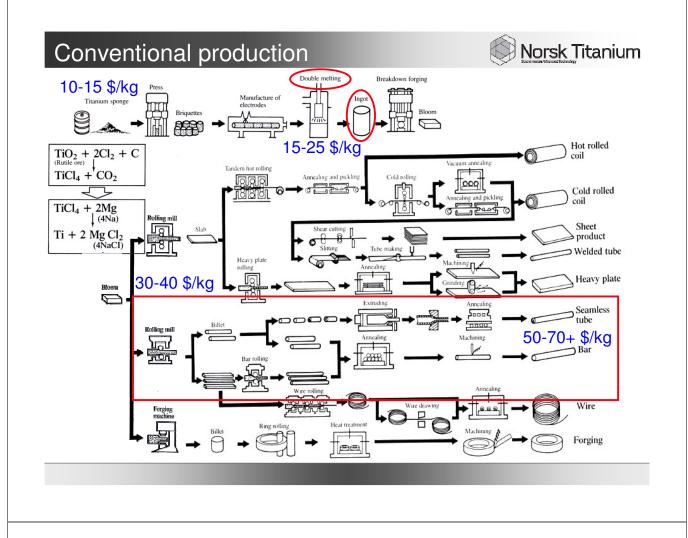
History of Scatec

SCATEC established in 1987 by Alf Bjørseth (100%)




- PhotoCure established in 1997 (Oslo Exchange)
- SCATEC established solar energy successes which merged as Renewable Energy Corp (REC) in 2000, went public in 2006, trading at Oslo Exchange
 - ScanWafer (1994), ScanCell (1998), ScanModule (1998), SolEnergy (1999), SiTech (2004)
- Established:
 - Norsk Titanium in 2004
 - NorSun in 2005
 - Thor Energy in 2006
 - Scatec Solar in 2007
 - Scatec Adventure in 2007
 - NorWind in 2007
 - OceanWind 2008
 - Scatec Power 2008


Industrial Macro Trends

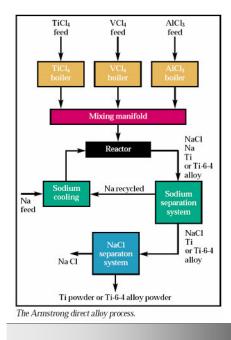


Reference: Ashby 1992

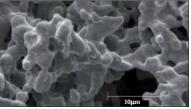
Alternative processes

Norsk Titanium

Reagent	Comments	Reductant	Process	Product
TiO ₂	Via TiCl ₄ ? – pigment Limited availability Environmentally friendly?	[Ca], Ca(liq)	OS/BHP	Powder
		Ca(g)	PRP	Powder
		e ⁻ - low T	FFC	Powder, sponge
		e⁻ - high T	MIT/QIT	Liquid
Impure TiO ₂	May use cheaper feedstock? Suitable for inert anode?	e⁻	MER	Dendrites
-		AI	various	Granules
TiCl₄	CO/CO ₂ /CHC emissions? High purity (5N+) Restricted feedstocks	Mg	Kroll	Sponge
		Na - batch	Hunter	Sponge
		Na - cont	ITP	Powder
		Ca	JTS	Powder
		H ₂	SRI	Granules
TiCl _x	Via TiCl₄? Ti recycling?	Mg	Sub-chloride	Powder
		e ⁻	GTT/EW	Dendrites


Alternative processes

Reagent	Comments	Reductant	Process	Product
TiO ₂	Via TiCl ₄ ? – pigment Limited availability Environmentally friendly?	[Ca], Ca(liq)	OS/BHP	Powder
_		Ca(g)	PRP	Powder
		e [.] - low T	FFC	Powder, sponge
		e [.] - high T	MIT/QIT	Liquid
Impure TiO ₂	May use cheaper feedstock? Suitable for inert anode?	e.	MER	Dendrites
		AI	various	Granules
TiCl ₄	CO/CO ₂ /CHC emissions? High purity (5N+) Restricted feedstocks	Mg	Kroll	Sponge
		Na - batch	Hunter	Sponge
		Na - cont	ITP	Powder
		Са	JTS	Powder
		H ₂	SRI	Granules
TiCl _x	Via TiCl₄? Ti recycling?	Mg	Sub-chloride	Powder
		e⁻	GTT/EW	Dendrites


Internation Titanium Powder

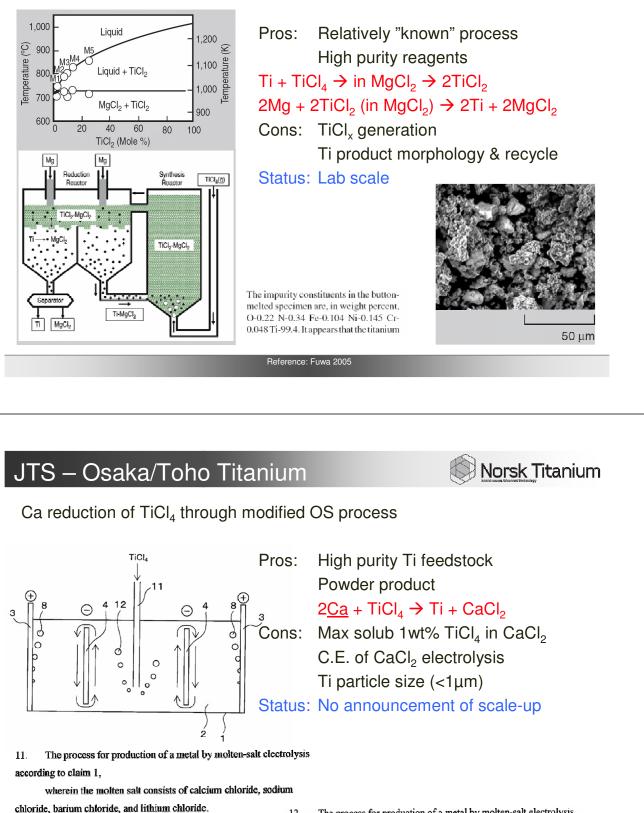
Continuous Na reduction of TiCl₄

Pros: Simplistic process (equip & chem) $TiCl_4 + 4Na \rightarrow Ti + 4NaCl$ $T_{mp} NaCl = 801 ^{\circ}C$ $T_{bp} Na = 883 ^{\circ}C$ Cons: Post-processing to increase p.s. Na-loop may be uneconomic

Status: Scaled up to tonne production

Norsk Titanium

Scanning electron microscope (SEM) image of the titanium product of the Armstrong process.


Apparent		Particle Size Analysis			Chemical Analysis		
Density		Mean	d50	d90	O2	N2	H2
g/cc	%	um	um	um	%	%	%
0.27	5.95	Raw powder (not milled)		0.175	0.003	0.0032	
1.13	24.89	91.26	46.06	176.6	0.275	0.009	0.0038
0.82	18.06	187.8	102	386.2	0.238	0.01	0.0032

Reference: Crowley 2003

Sub-chloride process

🕑 <u>Norsk</u> Titanium

Mg reduction of TiCl₂ investigated at University of Tokyo (IIS) & Waseda

12. The process for production of a metal by molten-salt electrolysis according to claim 1,

wherein a titanium tetrachloride supplying pipe is arranged in the inner area in which the metal is generated by the molten-salt electrolysis,

MIT – Elkem process

Dissolved TiO₂ in O & F-based melt

current feed

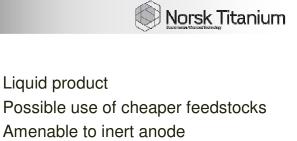
(+)

anode

molten oxide electrolyte

metal pool

 \bigcirc


Pros:

frozen

electrolyte

oxygen gas bubbles

liquid cathode

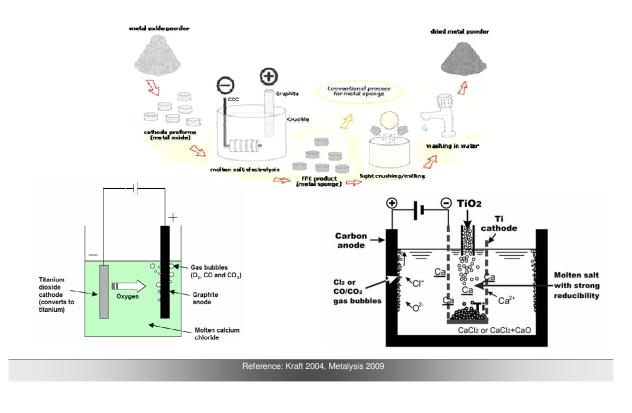
$\text{TiO}_2 + 4e^- \rightarrow \text{Ti}(\text{liq}) + 2O^{2-}$

Cons: e⁻ conductivity of Ti₂O₃ & Ti₃O₅ Materials of construction Ti product purity

Status: Bench scale

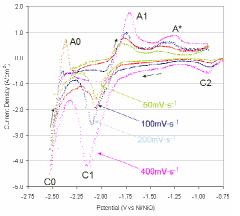
Norsk Titanium

OS/FFC/BHP/DeOx

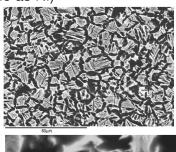

point feeders break crust and introduce metal oxide here

shell

cell sidewall frozen electrolyte


collector bar

Solid state reduction of TiO_2 -MO_x in fused salt electrolyte


OS/FFC/BHP/DeOx

- β -Ti has order of magnitude higher oxygen diffusion coefficient than α
- Common $\boldsymbol{\beta}$ stabilising elements:
 - V costly, VOCl₂ removed during distillation of TiCl₄
 - Mo difficult to alloy due to melting point difference with Ti
 - Zr cost of Zr metal
 - Nb cost of Nb metal
 - Fe contaminant from Kroll production (fast diffuser, same as Ni)
- Composite formation also possible
- Advantages of mixed oxides/ceramics

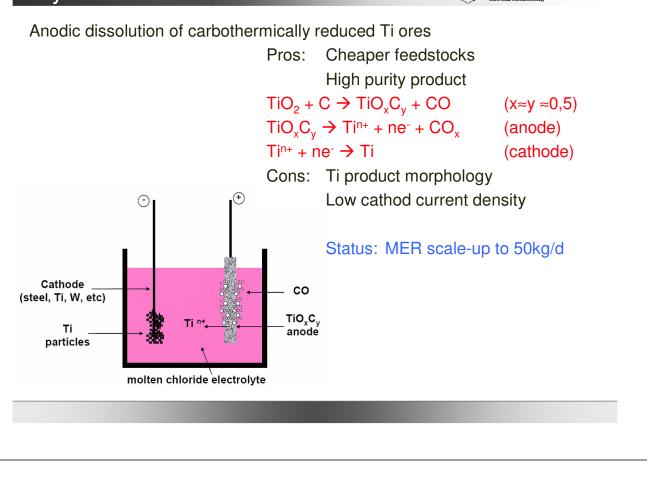


C2: $2\text{TiO}_2 + 2e^- \rightarrow \text{Ti}_2\text{O}_3$ C1: $\text{Ti}_2\text{O}_3 + 2e^- \rightarrow 2\text{TiO}$ C0: $\text{Ca}^{2+} + 2e^- \rightarrow \text{Ca}$ (a=1)

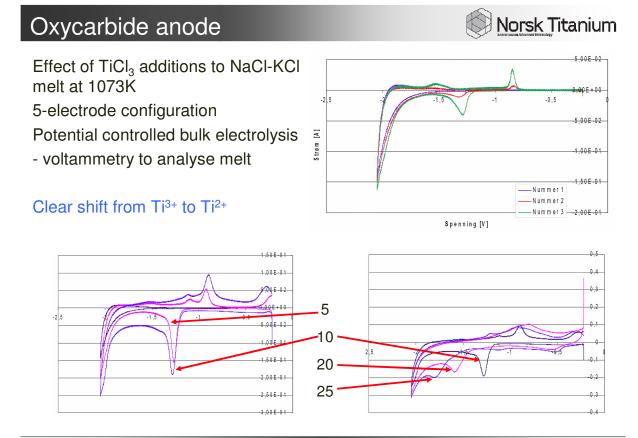
A0: Ca \rightarrow Ca²⁺ + 2e⁻ A1: 2TiO \rightarrow Ti₂O₃ + 2e⁻ A*: ?

Norsk Titanium

OS/FFC/BHP/DeOx


- Pros: Novel alloying capabilities Possible alternative feedstock materials (non-pigment ores) Low oxygen contents
- Cons: Low current efficiency and cathodic current density Solid state diffusion of oxygen rate limiting
- Status: Scaled-up for Ta, Ti research ongoing at Metalysis

Ongoing research: Inter > 2-1


Intermetallic inert anode $AI_{70}Ti_{25}Cu_5$ > 2-12 wt% Fe, Ni \rightarrow 2+ phases from SEM > Loss of AlCl₃ via gas phase Boron Doped Diamond (BDD) > Expensive production method > Low current density and high background currents

Reference: Jha 2008, Kudo 2008

Oxycarbide anode

Norsk Titanium

Reference: Kjos 2008

Oxycarbide anode

O Successful manufacture of TiO_xC_y anodes in laboratory scale from TiO₂ slag (TINFOS), with the optimal properties to be used in an electrolytic process for titanium production

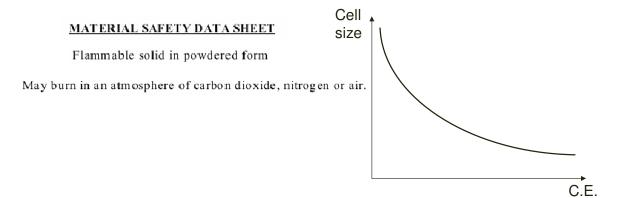
Production of titanium metal (laboratory scale) from the equimolar mixture NaCl-KCl using Ti cathodes and TiO_xC_y anodes made from TiO₂ slag powders

Service of the servic

Develop a vacuum destillation process of the cathode product

② Cathode product from Tl(II) lons gave titanium particles 30-40 µm size, with some "fines" (1-5 µm) ⇒ very reactive cathode product ③

O Cathode product from Ti(III) ions gave small particle size (it is mainly "fine" powder, 1-5 μ m, with some "flakes" ca 40 μ m length)


Purity of the Ti obtained with respect to other metals (V, Si and Fe) and C is still an open question

CE (Ti³⁺ basis and recovered product at the cathode): 30-40%

Reference: Martinez 2008

Conclusions

- · Kroll process has not been replaced
- New processes have largely been tested only at lab scales
- Ti particle size and specific energy consumption (kWh/kg Ti) have not been satisfactory for existing applications

1	T= 1600°C, esteq. C		C, esteq. C
	Raw material	reduction	"washing" HCI+NaOH
% TiO ₂ *	86.50	82.8	96.9
% FeO	9.70	9.5	<0.2
% MnO	2.10	1.68	0.4
% CaO	0.13	0.24	0.06
% MgO	0.66	0.6	0.6
% SiO ₂	1.60	1.6	<0.2
% Al ₂ O ₃	0.90	2.3	2.3
% Cr ₂ O ₃	0.03	0.1	<0.02
% V ₂ O ₅	0.28	0.27	0.31
% Nb	0.180	0.18	0.23
TOTAL	102.0	99.2	100.8
* Total Ti conter	nt (TiO ₂ +Ti ₂ O ₅) calculat		
■ NTNU			🔞 SINTE

Norsk Titanium

Future research

• Ore selection dependent on upgrading operation

- Chlorination flash vs fluid bed
- Carbothermic presence of alloying elements, radioactive species
- Chloride-based routes offer highest purity (metallothermic or EW)
- Parallels to AI- and Mg- electrolysis? Liquid product?
- Or... Kroll with incremental changes?
 - -Larger batch sizes with better heating/cooling
 - -Modified reactor design

Acknowledgements

- SINTEF: Ana Maria Martinez, Egil Skybakmoen, Karen S Osen
- NTNU: Geir Martin Haarberg, Ole S Kjos
- Norwegian Research Council Project 176734/i40
 "Miljøvennlig produksjon av metaller basert på ny deoksyderingsprosess"

References

M F Ashby, Materials Selection in Mechanical Design, Pergamon Press, 1992 G Crowley, Adv Mat'ls & Proc., Nov 2003, pp25-27 M J Donachie, TITANIUM: A Technical Guide, ASM International, 1988 N A Fried, Titanium Extraction by Molten Oxide Electrolysis, TMS 2004, Charlotte, NC A Fuwa, JOM, Oct 2005, pp56-60 A Jha, A Comparison of the Performance of Different Anodes on the Electro-winning of Titanium Metal from Titanium Dioxide, MS8 2008, Kobe, Japan O S Kjos, NFR Project Meeting - 176734/i40 Miljøvennlig produksjon av metaller basert på ny deoksyderingsprosess Y Kudo, Electrochemical Behavior of a Boron-doped Diamond Electrode in Molten Salts Containing Oxide Ion, MS8 2008, Kobe, Japan A M M Martinez, NFR Project Meeting - 176734/i40 Miljøvennlig produksjon av metaller basert på ny deoksyderingsprosess J L Murray, Phase Diagrams of Binary Titanium Alloys, ASM International, 1987 Metalysis webpage: http://www.metalysis.com/process.htm, accessed 5.2.2009 Toho Titanium Corp webpage: http://www.toho-titanium.co.jp/en/products/sponge.html, accessed 5.2.2009 World Patent 06/040978 – "Metal Producing Method and Producing Device by Molten Salt Electrolysis" Contact details: Norsk Titanium AS Kevin Dring kevin.dring@scatec.no Sommerrogaten 13-15 NO-0255 Oslo, Norway Upcoming conferences Norsk Titanium TMS 2010 - Lower Cost Titanium Symposium explore all areas of the Ti metal production process to

lower costs

- Upstream: ore & metal extraction _
- Downstream: melting, non-melt processing, post-
- production operations
- 5-6 symposia, 14-18 February, 2010, Seattle

2nd International Round Table on Titanium Production in Molten Salts

- Fall 2010, Trondheim, Norway
- Exact date to be determined