Electrolysis research at SINTEF / NTNU

Egil Skybakmoen
SINTEF Materials and chemistry
Trondheim, Norway

egil.skybakmoen@sintef.no

Workshop on Materials Process Engineering
San Francisco February 19.
Outline

- SINTEF
 - What is SINTEF?
 - Organisation

- Electrolysis Research Topics
 - Aluminium – main part
 - Silicon
 - Titanium (ref. K. Dring)
 - Iron (ref. Prof. Haarberg)
 - Ionic liquids
Technology for a better society
The Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology

The Norwegian University of Science and Technology (NTNU)

A Technological Cluster with Education, Basic and Applied Research

Campus
Located in Trondheim (1500) and Oslo (500).

One of the largest independent research institutes in Europe.
OUR Partners

- The Norwegian University of Science and Technology, NTNU
 - 20000 full-time students
 - 1000 scientific personnel

- University of Oslo, UiO,
 Faculty of mathematics and natural sciences
 - 4500 full-time students
 - 520 scientific personnel

NTNU and the SINTEF Group Collaboration in R & D

Joint use of laboratories and instruments

NTNU personnel working on SINTEF projects

SINTEF personnel teach at NTNU
The Norwegian Collaborative R&D

Partnership with three different players:
- Having slightly different roles
- Working towards the same common goal

The collaboration model contributes to:
- Industrial focus at the R&D institutions
- Scientific quality in the research
The SINTEF Group sources of finance

- Research Council strategic programmes: 3%
- Research Council basic grants: 3%
- Research Council project grants: 14%
- Industry: 42%
- Public sector: 16%
- International contracts: 15%
- Other income: 7%
- Other: 39%
SINTEF Group. Organization chart.
Materials and Chemistry

From ideas to business opportunities

400 employees

- Scientists 69%
- Engineers / technicians 23%
- Staff 8%
Areas of research

- Advanced Characterization and Analysis
- Biotechnology
- Chemical Engineering and Process Chemistry
- Energy Conversion
- Environmental Technology
- Flow Technology
- Functional Materials and Nanotechnology
- Materials Performance
- Materials Production and Recycling
- Modeling and Simulation
- Processing and Manufacturing
- Synthesis and Testing
Energy Conversion and Materials Research Teams

Research Director Rune Bredesen

- Electrolysis (6)
 Research Manager Egil Skybakmoen

- Inorganic Materials Chemistry (11)
 Research Manager Arne Petter Ratvik

- Energy Conversion (5)
 Research Manager Ann-Mari Svensson

- Functional Ceramics (6)
 Research Manager Christian Simon

- Materials for Energy and Environmental Technology (9)
 Research Manager Partow Henriksen
Main fields
Energy Conversion and Materials

- Electrolysis
 - Aluminium electrolysis
 - New processes SoG-Si, Ti, Fe, carbon nano tubes
 - Ionic liquids

- Inorganic Materials Chemistry
 - Refractories and ceramics
 - Carbon materials science – electrodes
 - Powder- and nano technology

- Energy Technology
 - Fuel cells, solar energy, hydrogen energy, etc

- Functional Ceramics
 - Membranes, coatings, nano-technology, etc

- Energy technology and environmental technology
 - Gas membranes, CO₂- capture, etc
Energy: 13 – 15 kwh/ton Al
Use around 2000 kg alumina, 500 kg Carbon to produce 1000 kg Al (and 1500-2000 kg CO₂)
Why Aluminium in Norway?

- Low-priced energy – water power – political reasons
 - But energy prices increasing now….long-term contracts going out.

- Hydro Aluminium
 - Has its own cell-technology (HAL 420+).
 - Karmøy - 295 000 t Al/y (125 000 t Søderberg, 170 000 t Pre-bake)
 - Sunndalsøra – 340 000 t Al/y (all pre-bake, new plant 2004)
 - Årdal- 226 000 t Al/y (50 000 t Søderberg, 176 000 t Pre-bake)
 - Høyanger – 76 000 t Al/y (23 000 t Søderberg, 53 000 t Pre-bake)
 - Bought VAW 2002 – plants in Germany, Canada, Australia.
 - New plant in Qatar planned around 2010 – 570 000 t Al/y
 - Søderberg out in 2007 (Høyanger, Årdal) and 2009 at Karmøy.

- Elkem Al (100 % Alcoa from 2009)
 - Mosjøen – 185 000 t Al/y (all pre-bake). New anode carbon plant finished 2007.
 - Lista - 100 000 t Al/y (all Søderberg)

- Sør-Norge Al (51 % Alcan, 49 % Hydro Al)
 - Husnes – 170 000 t Al/y (all Pre-bake)
Søderberg plant
Modern Pre-bake line - Sunndalsøra
EXPORT VALUES FROM NORWEGIAN INDUSTRY

Source:
Statistisk sentralbyrå (Nina Rolsdorph, Konsulent, Sektion for utenrikshandel)
Aluminium Electrolysis

More than 30 years research cooperation with the Norwegian Aluminium industry has led to significant process improvements. Some projects/fields:
The primary aluminium group at SINTEF/NTNU has in average 10 scientific publications per year.

Actively involved in the work of many of the PhD candidates educated at NTNU.
Field of Research

- Traditionally only primary production of Al – a long and strong co-operation with the Norwegian Al industry and NTNU. Recruitment. Ph-D students.

- High temperature lab. – molten salts from 600 – 1600 °C.
 - Electrochemical measuring methods (cyclic voltametry etc…). Electrode reactions.
 - Systematic mapping of electrolyte properties – fluoride melts, mainly.
 - Analytical methods (LECO for oxide content in melts). Na-content in metal.
 - Current efficiency (optimal cathode reaction).
 - Measurements on industrial cells (CE, distance electrodes, anodic overvoltage, flow pattern electrolyte, metal, liquidus temperatures etc.
 - Modeling – heat balance, flow pattern (FLUENT)
 - Voltage balance – save energy.
 - Development of sensors (oxide content in situ, AlF₃-content in situ)
 - Gas driven flows – gas bubble resistance.
 - HF- formation – climate gases (CF₄, C₂F₆)
Projects: Al-related topics

- CarboMat (Ended 2006)
 - RCN, Hydro Al, Elkem, Sørål, Statoil and Ferro-alloy industry
- ThermoTech (Degradation linings, modeling) Ended 2008
 - RCN, Hydro Al, Elkem, Sørål, Statoil and Ferro-alloy industry
- DuraMat (starts 2009).
 - Hydro Al, Alcoa Norway and Sørål and RCN
- Hydro Al
 - Some projects related to the days process (confidential)
 - Also projects partly financed by RCN (5 year program started 2006)
- Others
 - For instance SGL-Carbon (graphite cathode materials)
- Testing Refractories
 - Suppliers world-wide (SiC-based sidelinings and bottom linings)
 - Alilab (Al-industries refractories lab. at SINTEF)
Primary Al Research
Future challenges

- Energy recovery
 - Low temp. concepts
 - High temp. concepts
- CO$_2$-capture
 - Is it possible? – economic?
- Raw materials
 - Anode quality
 - Alumina
- Metal quality
 - Impurities
- Energy efficiency (voltage drop in cell components)
- Process control systems
 - sensors for cont. temp./ AlF$_3$ / Al$_2$O$_3$
Primary Al Research
Future challenges

- Increased lifetime of cell
 - Cathode wear – the main problem today!
 - Linings
 - New improved materials

- Reduced SPL
 - Reuse linings?

- Fluoride emissions
 - HF
 - CF₄ / C₂F₆ (no anode effects)

- Alternative processes for Al electrowinning
 - Inert electrodes – still a topic for Alcoa and Rusal…
 - Alternative electrolytes
 - Gas-electrodes (Gassmaks project)
 - Carbothermic process (Alcoa-Elkem)
Solar Grade Silicon
The worlds need energy – clean energy
New technologies for production of SoG Si

- Today, there is a lack of solar grade silicon due to increased production and use of solar cells
- New processes to produce SoG Si must be developed

- Technologies being industrialized:
 - Carbothermic reduction with purification
 - Direct carbothermic reduction from pure raw materials
 - Reduction with zinc

- Electrochemical methods under development:
 - Electrochemical refining of MG-Si
 - Electrochemical deposition of Si
 - Deoxidation of solid SiO₂

Source: Wacker 2nd SoG Si Workshop
Electrochemical Silicon at SINTEF and NTNU

1. Si electrolysis from CaCl₂-CaO-SiO₂ at 850°C
 E.Olsen, ”Electrolyte and method for manufacturing and/or refining of silicon”, PCT WO 2002/099166 A1

2. EU project FoXy, WP3: Electrochemical refinement of metallurgical feedstock at 700-850°C

3. Refining of liquid Si in fluoride melts-”3 layers process” at above 1450°C

 E.Olsen, ”Electrolyte and method for electrochemical refining of Silicon”, PCT WO 2008/115072 A2
Si electrolysis

Electrolyte: CaCl$_2$- CaO (10wt%) - SiO$_2$

T= 850$^\circ$C

Cathode reaction:
Si(IV) + 4e$^-$ → Si (s)

Anode reaction:
C(s) + 2 O$^{2-}$ → CO$_2$ (g) + 4e$^-$
Electrochemical refining of Si

Principle

- anode reaction:
 \[\text{Si (with impurities)} \rightarrow \text{Si (IV)} + 4e^- \]

- cathode reaction:
 \[\text{Si (IV)} + 4e^- \rightarrow \text{Si (without impurities)} \]

Elements less noble than Si will not deposit at the cathode

Elements more noble than Si will not dissolve anodically
Removal (scraping off) cathode deposit
Used electrodes

Used anode, partly dissolved

Split cathode, with very hard deposit adhering (difficult to scrape off)

Original solar grade silicon material

Hard adhering cathode deposit
Treatment of cathode deposit
Scraped off deposit re-melted with a flux of CaF$_2$ under inert atmosphere in an induction furnace

Prior to re-melting: Deposit in glassy carbon crucible placed in induction furnace

After melting of deposit: Si had coalesced into larger globules of coherent “metal”.

Broken globule of silicon that could easily be separated from the frozen flux.
Electrochemical refining of Si

Refining of Si in chloride melts

Electrolyte composition:
\[\text{CaCl}_2–\text{CaO–NaCl–Si (80:10:5:5 mol\%)} \]

\[T= 850 ^\circ \text{C} \]

Argon atmosphere

\[\text{anode reaction:} \]
\[\text{Si (with impurities)} \rightarrow \text{Si(IV)} + 4e^- \]

\[\text{cathode reaction:} \]
\[\text{Si(IV)} + 4e^- \rightarrow \text{Si (without impurities)} \]
Electrochemical refining of Si

Refining of Si in fluoride melts

Electrolysis cell

High temperature electrochemical refining of Si

Refining of liquid Si in fluoride melts-”3 layers process”

Titanium

Atomic symbol: Ti
Atomic Number: 22
Atomic Radius: 144.8 pm
Melting Point: 1668 C
Atomic Weight: 47.90
Boiling Point: 3287 C
Electron Configuration: [Ar]4s23d2
Oxidation States: 4, 3, 2
Titanium electrolysis

Since autumn 2006, SINTEF together with NTNU participate in a project supported by the Norwegian Research Council and Norsk Titanium AS

1. Electrodeoxidation of TiO₂ cathodes in molten chlorides
2. Electrowinning of Ti from TiOₓCᵧ anodes
Electrodeoxidation of TiO$_2$

FFC Cambridge Process

- **cathode reaction:**
 \[\text{TiO}_2 \text{(s)} + 2\text{e}^- \rightarrow \text{Ti} \text{(s)} + \text{O}_2^- \]

- **anode reaction:**
 \[\text{O}_2^- \rightarrow \frac{1}{2} \text{O}_2 + 2\text{e}^- \text{ (inert anode)} \]
 \[\text{O}_2^- + \frac{1}{2} \text{C} \rightarrow \frac{1}{2} \text{CO}_2 \text{(g)} + 2\text{e}^- \text{ (C anode)} \]
TiO$_x$C$_y$ anodes

- **Cathode reaction:**
 \[Ti^{n+} + ne^- \rightarrow Ti \text{ (s)} \]

- **Anode reaction:**
 \[TiO_xC_y \text{ (s)} \rightarrow Ti^{n+} + (x+y) \text{ CO(g)} + ne^- \]
Iron

Fe smelting by carbon reduction of Fe$_2$O$_3$ \rightarrow CO$_2$ emission

ULCOS
Ultra Low CO$_2$ Steelmaking
Iron

- Cathode reaction:
 \[\text{Fe(III)} + 3e^- \rightarrow \text{Fe (s)} \]

- Anode reaction:
 \[\text{O}_2^- \rightarrow \frac{1}{2} \text{O}_2 (g) + 2e^- \]

![Diagram of iron production process]

- Graphite crucible
- Steel cathode (revolving cylinder)
- KF-NaF-Fe\textsubscript{2}O\textsubscript{3} mixture
- Excess Fe\textsubscript{2}O\textsubscript{3}
- Inert anode, Magnetite
- Ref. electrode, Fe wire
- Gas bubbles
- Revolving cathode
- Anode
Iron

Processing the cathode deposit

- 39.05 g scraped off deposit
- Beaker with fixed magnets on the outside
- Magnetic stirring
- Final product: 4.46 g fine-grained iron
- Drying fine-grained iron in rotating magnetic field
- Adhering fine-grained iron
Ionic liquids

Electrolytic processes in room / low temperature molten salts

“Electrodeposition of Si thin-films from Ionic Liquids for Photovoltaic Applications”
Thanks for your attention